Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (10): 42-51    DOI: 10.13523/j.cb.2104042
技术与方法     
同轴打印小直径组织工程血管*
宋标标1,顾奇1,2,3,**()
1 中国科学技术大学生命科学学院 合肥 230027
2 中国科学院动物研究所膜生物学国家重点实验室 北京 100101
3 北京干细胞与再生医学研究院 北京 100101
Construction of Small Diameter Tissue Engineering Blood Vessels by Coaxial Printing
SONG Biao-biao1,GU Qi1,2,3,**()
1 School of Life Science, Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
2 State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
3 Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
 全文: PDF(1925 KB)   HTML
摘要:

随着人口老龄化问题的日益严重以及心血管疾病患病的增加,临床上对血管移植物的需求量也逐渐增大。利用涤纶和聚四氟乙烯制备大直径血管(>6mm)在临床上得到了广泛的应用,而小直径(< 6 mm)血管常因血栓和感染导致移植的失败,因此构建内皮细胞贴附的组织工程血管就显得至关重要。通过合成RGD修饰的海藻酸钠(RGD-alginate, RGD-ALG)以及甲基丙烯酸化的明胶(methacrylated gelatin,GelMA),利用氯化钙溶液溶解的普朗尼克F127作为牺牲材料,利用同轴打印制备出组织工程血管。通过选择不同直径的同轴打印喷嘴以及调节打印参数,可以制备出不同直径的组织工程血管。制备出的组织工程血管可以承受人生理状态下的血管压力,可以进行稳定的灌流培养,并且人脐静脉血管内皮细胞在通入组织工程血管中后可以稳定贴附在管壁上。

关键词: RGD-ALG同轴打印组织工程血管    
Abstract:

Currently, with the severity of population aging, cardiovascular disease(CVD) brings about health problems and unbearable economic burdens. In ischemic illnesses caused by the damage of small-diameter blood vessels, blood vessel transplantation has become an effective solution to tackle this challenge. However, small-diameter blood vessels are currently in high demand. Therefore, it is pretty crucial to construct small-diameter tissue-engineered blood vessels (TEBV) using tissue engineering methods. With the advancement of tissue engineering and 3D printing technology, the research of vascular grafts has developed rapidly. At present, most of the vascular graft materials used for large-diameter vascular grafts are polyester and polytetrafluoroethylene (PTFE). However, it is not applicable for the fabrication of small-diameter TEBV, in which case a myriad of unavoidable problems may come alone, such as inflammation and thrombosis. At the same time, current TEBV has such limitations as insufficient mechanical properties, which seriously hinder the clinical translation of TEBV. Therefore, in this experiment, we independently synthesized methacrylated gelatin (GelMA) and RGD-modified sodium alginate (RGD-Alginate) combined to form a double cross-linking system. By adding xanthan gum, the printability of the system is guaranteed. We used coaxial printing to fabricate a tube-like structure. Hybrid material system was characterized by a low vacuum cryo-scanning electron microscope. We found honeycomb-like forms appear on the surface, indicating that oxygen and nutrients could be provided to the cells in the tube through penetration. As for the selection of materials, the sacrificial material in the inner layer is 25% Pluronic F127 dissolved in 2% calcium chloride (CaCl2), and the outer material is 4% RGD-Alginate+5% GelMA+2% Xanthan Gum. During the printing process, the extrusion pressure of the printer is related to the diameter of the selected coaxial nozzles. When the 18G/14G coaxial nozzle is applied, the printing pressure is 55 kPa, and the printing speed is 5 mm/s. The syringe pump is utilized to extrude the material of the outer layer, whose speed is 264 μL/min. In the printing procedure, we selected two nozzles with different diameters to effectively fabricate a tube matching the nozzle diameter. In addition, a device for detecting burst pressure was established, which uses constant extrusion of the syringe pump to provide stable pressure to the tested tube. It has been demonstrated that the burst pressure is 328 mmHg±14 mmHg, which is quite different from the burst pressure of natural blood vessels in vivo. At the same time, it is sufficient to bear the vascular pressure in the physiological state of the human body. Human umbilical vein endothelial cells (HUVECs) were perfused into the tube-like structure (cell concentration was 1×107/mL). Through the imaging characterization of the cell state in the tube-like structure, it was found that HUVECs can be stably attached to the inner wall of a fabricated tube-like structure.

Key words: RGD-ALG    Coaxial printing    Tissue engineered blood vessel
收稿日期: 2021-04-23 出版日期: 2021-11-08
ZTFLH:  Q819  
基金资助: * 中国科学院器官重建与制造战略性先导科技专项(XDA16020802);中国科学院科研仪器设备研制项目(YJKYYQ20190045);机器人国家重点实验室项目(2019-005)
通讯作者: 顾奇     E-mail: qgu@ioz.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宋标标
顾奇

引用本文:

宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.

SONG Biao-biao,GU Qi. Construction of Small Diameter Tissue Engineering Blood Vessels by Coaxial Printing. China Biotechnology, 2021, 41(10): 42-51.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2104042        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I10/42

图1  材料的合成及鉴定
图2  RGD对RFP-HUVECs贴附的影响
图3  材料的流变学测试
图4  同轴打印
图5  爆破压装置示意图
图6  HUVECs在管道壁上贴附
[1] Perk J, de Backer G, Gohlke H, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012): the fifth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Atherosclerosis, 2012, 223(1): 1-68.
doi: 10.1016/j.atherosclerosis.2012.05.007
[2] Song H H G, Rumma R T, Ozaki C K, et al. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell, 2018, 22(3): 340-354.
doi: 10.1016/j.stem.2018.02.009
[3] Mozaffarian D, Benjamin E J, Go A S, et al. Executive summary: heart disease and stroke statistics-2016 update: a report from the American heart association. Circulation, 2016, 133(4): 447-454.
doi: 10.1161/CIR.0000000000000366 pmid: 26811276
[4] Kunlin J. Long vein transplantation in treatment of ischemia caused by arteritis. Revue de Chirurgie, 1951, 70(7-8): 206-235.
[5] Nugent H M, Edelman E R. Tissue engineering therapy for cardiovascular disease. Circulation Research, 2003, 92(10): 1068-1078.
pmid: 12775655
[6] Hasan A, Memic A, Annabi N, et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 2014, 10(1): 11-25.
doi: 10.1016/j.actbio.2013.08.022
[7] Nair L S, Laurencin C T. Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007, 32(8-9): 762-798.
doi: 10.1016/j.progpolymsci.2007.05.017
[8] Weinberg C B, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science, 1986, 231(4736): 397-400.
pmid: 2934816
[9] Ayala P, Dai E B, Hawes M, et al. Evaluation of a bioengineered construct for tissue engineering applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018, 106(6): 2345-2354.
doi: 10.1002/jbm.b.v106.6
[10] Quint C, Arief M, Muto A, et al. Allogeneic human tissue-engineered blood vessel. Journal of Vascular Surgery, 2012, 55(3): 790-798.
doi: 10.1016/j.jvs.2011.07.098 pmid: 22056286
[11] Lawson J H, Glickman M H, Ilzecki M. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet, 2016, 387(10032): 2026-2034.
doi: 10.1016/S0140-6736(16)00557-2
[12] L’Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nature Medicine, 2006, 12(3): 361-365.
doi: 10.1038/nm1364
[13] Galili U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunology and Cell Biology, 2005, 83(6): 674-686.
pmid: 16266320
[14] Kim G, Ahn S, Kim Y, et al. Coaxial structured collagen-alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. Journal of Materials Chemistry, 2011, 21(17): 6165-6172.
doi: 10.1039/c0jm03452e
[15] Kjar A, McFarland B, Mecham K, et al. Engineering of tissue constructs using coaxial bioprinting. Bioactive Materials, 2021, 6(2): 460-471.
doi: 10.1016/j.bioactmat.2020.08.020
[16] Zeng Z W, Hu C S, Liang Q F, et al. Coaxial-printed small-diameter polyelectrolyte-based tubes with an electrostatic self-assembly of heparin and YIGSR peptide for antithrombogenicity and endothelialization. Bioactive Materials, 2021, 6(6): 1628-1638.
doi: 10.1016/j.bioactmat.2020.10.028
[17] Liang Q F, Gao F, Zeng Z W, et al. Coaxial scale-up printing of diameter-tunable biohybrid hydrogel microtubes with high strength, perfusability, and endothelialization. Advanced Functional Materials, 2020, 30(43): 2001485.
doi: 10.1002/adfm.v30.43
[18] Kuo C K, Ma P X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1, structure, gelation rate and mechanical properties. Biomaterials, 2001, 22(6): 511-521.
pmid: 11219714
[19] Fu S, Thacker A, Sperger D M, et al. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS PharmSciTech, 2011, 12(2): 453-460.
doi: 10.1208/s12249-011-9587-0
[20] Jørgensen T E, Sletmoen M, Draget K I, et al. Influence of oligoguluronates on alginate gelation, kinetics, and polymer organization. Biomacromolecules, 2007, 8(8): 2388-2397.
pmid: 17602585
[21] Jia J, Richards D J, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomaterialia, 2014, 10(10): 4323-4331.
doi: 10.1016/j.actbio.2014.06.034 pmid: 24998183
[22] Liu Y X, Chan-Park M B. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 2010, 31(6): 1158-1170.
doi: 10.1016/j.biomaterials.2009.10.040
[23] Van den Steen P E, Dubois B, Nelissen I, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical Reviews in Biochemistry and Molecular Biology, 2002, 37(6): 375-536.
doi: 10.1080/10409230290771546
[24] Bertassoni L E, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 2014, 14(13): 2202-2211.
doi: 10.1039/c4lc00030g pmid: 24860845
[25] Nemeth C L, Janebodin K, Yuan A E, et al. Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Engineering Part A, 2014, 20(21-22): 2817-2829.
doi: 10.1089/ten.tea.2013.0614
[26] de Eke G, de Mangir N, Hasirci N, et al. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials, 2017, 129: 188-198.
doi: 10.1016/j.biomaterials.2017.03.021
[27] Navaei A, Saini H, Christenson W, et al. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomaterialia, 2016, 41: 133-146.
doi: 10.1016/j.actbio.2016.05.027 pmid: 27212425
[28] Yue K, Trujillo-de Santiago G, Alvarez M M, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73: 254-271.
doi: 10.1016/j.biomaterials.2015.08.045
[29] Gao G, Lee J H, Jang J, et al. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease. Advanced Functional Materials, 2017, 27(33): 1700798.
doi: 10.1002/adfm.201700798
[30] Gao G, Park W, Kim B S, et al. Construction of a novel in vitro atherosclerotic model from geometry-tunable artery equivalents engineered via in-bath coaxial cell printing. Advanced Functional Materials, 2021, 31(10): 2008878.
doi: 10.1002/adfm.v31.10
[31] Konig G, McAllister T N, Dusserre N, et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials, 2009, 30(8): 1542-1550.
doi: 10.1016/j.biomaterials.2008.11.011
[32] Galie P A, Nguyen D H T, Choi C K, et al. Fluid shear stress threshold regulates angiogenic sprouting. PNAS, 2014, 111(22): 7968-7973.
doi: 10.1073/pnas.1310842111
[33] Song J W, Munn L L. Fluid forces control endothelial sprouting. PNAS, 2011, 108(37): 15342-15347.
doi: 10.1073/pnas.1105316108
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.