Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (12): 76-81    DOI: 10.13523/j.cb.20181210
综述     
形状记忆聚合物在组织工程中的应用 *
郗来顺1,云鹏1,王元斗2,张冠宏3,邢泉生4,陈阳生5,宿烽1,2,**()
1 青岛科技大学化工学院 青岛 266042
2 青岛科技大学高性能聚合物研究院 青岛 266042
3 胜利油田中心医院 东营 257000
4 青岛市妇女儿童医院 青岛 266034
5 青岛正大海尔制药有限公司 青岛 266103
Application of Shape Memory Polymer in Tissue Engineering
XI Lai-shun1,YUN Peng1,WANG Yuan-dou2,ZHANG Guan-hong3,XING Quan-sheng4,CHEN Yang-sheng5,SU Feng1,2,**()
1 College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2 Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
3 Shengli Oilfield Central Hospital, Dongying 257000, China
4 Qingdao Women and Children’s Hospital, Qingdao 266034, China;
5 Qingdao Chiatai Haier Pharmaceutical Co., LTD, Qingdao 266103, China
 全文: PDF(399 KB)   HTML
摘要:

形状记忆聚合物是由固定相和可逆相构成的具有在外界刺激条件下诱导形状改变特性的一类高分子智能材料。相较于传统的形状记忆合金与陶瓷,其具有特定的生物可降解性、更高的机械性能调控空间、更强的形变恢复能力及更优良的生物相容性。凭借材料特性,近阶段针对形状记忆聚合物在组织工程领域的应用研究愈发广泛,包括血管组织、骨骼肌组织、神经组织与骨组织等方面。综述近年来形状记忆聚合物在多种组织工程领域研究中的实验创新、技术突破与应用拓展,例如将其作为新型多孔血管支架、骨骼肌修复支架、神经修复导管与骨缺损填充物等。可预见随着技术和材料的不断发展,形状记忆聚合物在组织工程领域的应用将更加成熟。

关键词: 形状记忆聚合物组织工程3D支架    
Abstract:

Shape memory polymers are smart materials composed of a stationary phase and a reversible phase that induce shape change under external stimulus conditions. Compared with traditional shape memory alloys and ceramics, it has specific biodegradability, higher mechanical property control space, stronger deformation recovery ability and better biocompatibility. Due to the material properties, the application of shape memory polymers in the field of tissue engineering has become more and more extensive in recent years, including vascular tissue, skeletal muscle tissue, nerve tissue and bone tissue. In this paper, the experimental innovations, technological breakthroughs and application developments of shape memory polymers in various fields of tissue engineering have been reviewed in recent years, for example, as novel porous vascular stents, skeletal muscle repair stents, nerve repair catheters and bone defect fillers. It is foreseeable that with the continuous development of technology and materials, the application of shape memory polymers in the field of tissue engineering will be more mature.

Key words: Shape memory polymers    Tissue engineering    3D scaffolds
收稿日期: 2018-06-21 出版日期: 2019-01-10
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81570287);* 山东省重点研发计划(2018GGX102016);* 青岛市民生科技计划(16-6-2-9-nsh)
通讯作者: 宿烽     E-mail: sufengvip@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郗来顺
云鹏
王元斗
张冠宏
邢泉生
陈阳生
宿烽

引用本文:

郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.

XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering. China Biotechnology, 2018, 38(12): 76-81.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181210        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I12/76

[1] Hager M D, Bode S, Weber C , et al. Shape memory polymers: past, present and future developments. Progress in Polymer Science, 2015,49:3-33.
doi: 10.1016/j.progpolymsci.2015.04.002
[2] Hasan S M, Nash L D, Maitland D J . Porous shape memory polymers: design and applications. Journal of Polymer Science Part B: Polymer Physics, 2016,54(14):1300-1318.
[3] Jiang Z C, Xiao Y Y, Kang Y , et al. Shape memory polymers based on supramolecular interactions. ACS Applied Materials & Interfaces, 2017,9(24):20276-20293.
doi: 10.1021/acsami.7b03624 pmid: 28553712
[4] Bodaghi M, Damanpack A R, Liao W H . Triple shape memory polymers by 4D printing. Smart Materials and Structures, 2018,27(6):065010.
[5] Lee A Y, An J, Chua C K . Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering, 2017,3(5):663-674.
doi: 10.1016/J.ENG.2017.05.014
[6] Kim Y J, Matsunaga Y T . Thermo-responsive polymers and their application as smart biomaterials. Journal of Materials Chemistry B, 2017,5(23):4307-4321.
doi: 10.1039/C7TB00157F
[7] Mangeon C, Renard E, Thevenieau F , et al. Networks based on biodegradable polyesters: an overview of the chemical ways of crosslinking. Materials Science and Engineering: C, 2017,80:760-770.
doi: 10.1016/j.msec.2017.07.020 pmid: 28866226
[8] Liu T, Zhou T, Yao Y , et al. Stimulus methods of multi-functional shape memory polymer nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 2017,100:20-30.
[9] Behl M, Lendlein A . Actively moving polymers. Soft Matter, 2007,3(1):58-67.
[10] Hu J, Zhu Y, Huang H , et al. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Progress in Polymer Science, 2012,37(12):1720-1763.
doi: 10.1016/j.progpolymsci.2012.06.001
[11] Mu T, Liu L, Lan X , et al. Shape memory polymers for composites. Composites Science and Technology, 2018,160:169-198.
doi: 10.1016/j.compscitech.2018.03.018
[12] Peterson G I, Dobrynin A V, Becker M L . Biodegradable shape memory polymers in medicine. Advanced Healthcare Materials, 2017,6(21):1700694.
doi: 10.1002/adhm.201700694 pmid: 28941154
[13] Weng P, Yin X, Yang S , et al. Functionalized magnesium hydroxide fluids/acrylate-coated hybrid cotton fabric with enhanced mechanical, flame retardant and shape-memory properties. Cellulose, 2018,25(2):1425-1436.
doi: 10.1007/s10570-017-1611-4
[14] Wu S, Xu W, Balamurugan G P , et al. Recovery behaviour of shape memory polyurethane based laminates after thermoforming. Smart Materials and Structures, 2017,26(11):115002.
[15] Eisenhaure J, Kim S . High-strain shape memory polymers as practical dry adhesives. International Journal of Adhesion and Adhesives, 2018,81:74-78.
[16] Mirvakili S M, Hunter I W . Artificial muscles: mechanisms, applications, and challenges. Advanced Materials, 2018,30(6):1704407.
doi: 10.1002/adma.201704407 pmid: 29250838
[17] Duarah R, Singh Y P, Gupta P , et al. High performance bio-based hyperbranched polyurethane/carbon dot-silver nanocomposite: a rapid self-expandable stent. Biofabrication, 2016,8(4):045013.
doi: 10.1088/1758-5090/8/4/045013 pmid: 27788125
[18] Kashif M, Yun B, Lee K S , et al. Biodegradable shape-memory poly (ε-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: sustained drug release and hydrolytic degradation. Materials Letters, 2016,166:125-128.
doi: 10.1016/j.matlet.2015.12.051
[19] Jing X, Mi H Y, Huang H X , et al. Shape memory thermoplastic polyurethane (TPU)/poly (ε-caprolactone)(PCL) blends as self-knotting sutures. Journal of the Mechanical Behavior of Biomedical Materials, 2016,64:94-103.
doi: 10.1016/j.jmbbm.2016.07.023 pmid: 27490212
[20] Wong Y S, Salvekar A V, Zhuang K D , et al. Bioabsorbable radiopaque water-responsive shape memory embolization plug for temporary vascular occlusion. Biomaterials, 2016,102:98-106.
doi: 10.1016/j.biomaterials.2016.06.014 pmid: 27322962
[21] Atoufi Z, Zarrintaj P, Motlagh G H , et al. A novel bio electro active alginate-aniline tetramer/agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. Journal of Biomaterials Science, Polymer Edition, 2017,28(15):1617-1638.
doi: 10.1080/09205063.2017.1340044 pmid: 28589747
[22] Meng H, Li G . A review of stimuli-responsive shape memory polymer composites. Polymer, 2013,54(9):2199-2221.
doi: 10.1016/j.polymer.2013.02.023
[23] Zhang Y S, Oklu R, Dokmeci M R , et al. Three-dimensional bioprinting strategies for tissue engineering. Cold Spring Harbor Perspectives in Medicine, 2018,8(2):a025718.
doi: 10.1101/cshperspect.a025718 pmid: 28289247
[24] Mortimer C J, Wright C J . The fabrication of iron oxide nanoparticle-nanofiber composites by electrospinning and their applications in tissue engineering. Biotechnology Journal, 2017,12(7):1600693.
doi: 10.1002/biot.201600693 pmid: 28635132
[25] Kelly C N, Miller A T, Hollister S J , et al. Design and structure-function characterization of 3D printed synthetic porous biomaterials for tissue engineering. Advanced Healthcare Materials, 2018,7(7):1701095.
doi: 10.1002/adhm.201701095 pmid: 29280325
[26] Miao S, Castro N, Nowicki M , et al. 4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 2017,20(10):577-591.
doi: 10.1016/j.mattod.2017.06.005 pmid: 29403328
[27] Townsend N, Wilson L, Bhatnagar P , et al. Cardiovascular disease in Europe: epidemiological update 2016. European Heart Journal, 2016,37(42):3232-3245.
doi: 10.1093/eurheartj/ehw468 pmid: 27856561
[28] Liu R H, Ong C S, Fukunishi T , et al. Review of vascular graft studies in large animal models. Tissue Engineering Part B: Reviews, 2018,24(2):133-143.
doi: 10.1089/ten.TEB.2017.0350 pmid: 28978267
[29] Dimitrievska S, Niklason L E . Historical perspective and future direction of blood vessel developments. Cold Spring Harbor Perspectives in Medicine, 2018,8(2):a025742.
doi: 10.1101/cshperspect.a025742 pmid: 28348177
[30] Pashneh-Tala S , MacNeil S, Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Engineering Part B: Reviews, 2015,22(1):68-100.
[31] Xiang P, Wang S S, He M , et al. The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Colloids and Surfaces B: Biointerfaces, 2018,163:19-28.
[32] Motlagh D, Yang J, Lui K Y , et al. Hemocompatibility evaluation of poly (glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 2006,27(24):4315-4324.
doi: 10.1016/j.biomaterials.2006.04.010
[33] Zhao Q, Wang J, Cui H , et al. Programmed shape‐morphing scaffolds enabling facile 3D endothelialization. Advanced Functional Materials, 2018,28(29):1801027.
[34] Liu D, Xiang T, Gong T , et al. Bioinspired 3D multilayered shape memory scaffold with a hierarchically changeable micropatterned surface for efficient vascularization. ACS Applied Materials & Interfaces, 2017,9(23):19725-19735.
doi: 10.1021/acsami.7b05933 pmid: 28540725
[35] Larouche J, Greising S M, Corona B T , et al. Robust inflammatory and fibrotic signaling following volumetric muscle loss: a barrier to muscle regeneration. Cell Death & Disease, 2018,9(3):409.
doi: 10.1038/s41419-018-0455-7
[36] Grogan B F, Hsu J R , Skeletal Trauma Research Consortium. Volumetric muscle loss. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2011,19:S35-S37.
[37] Potter S M, Ferris S I . Reliability of functioning free muscle transfer and vascularized ulnar nerve grafting for elbow flexion in complete brachial plexus palsy. Journal of Hand Surgery (European Volume), 2017,42(7):693-699.
doi: 10.1177/1753193417702029
[38] Grasman J M, Zayas M J, Page R L , et al. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomaterialia, 2015,25:2-15.
doi: 10.1016/j.actbio.2015.07.038 pmid: 4562809
[39] Wolf M T, Dearth C L, Sonnenberg S B , et al. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 2015,84:208-221.
doi: 10.1016/j.addr.2014.08.011 pmid: 25174309
[40] Deng Z, Guo Y, Zhao X , et al. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation. Acta Biomaterialia, 2016,46:234-244.
doi: 10.1016/j.actbio.2016.09.019 pmid: 27640917
[41] Wang L, Cao L, Shansky J , et al. Minimally invasive approach to the repair of injured skeletal muscle with a shape-memory scaffold. Molecular Therapy, 2014,22(8):1441-1449.
doi: 10.1038/mt.2014.78 pmid: 24769909
[42] Dalamagkas K, Tsintou M, Seifalian A . Advances in peripheral nervous system regenerative therapeutic strategies: a biomaterials approach. Materials Science and Engineering: C, 2016,65:425-432.
doi: 10.1016/j.msec.2016.04.048 pmid: 27157770
[43] Fernandez L, Komatsu D E, Gurevich M , et al. Emerging strategies on adjuvant therapies for nerve recovery. The Journal of Hand Surgery, 2018,43(4):368-373.
doi: 10.1016/j.jhsa.2018.01.023
[44] Zhan X, Gao M, Jiang Y , et al. Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomedicine: Nanotechnology, Biology and Medicine, 2013,9(3):305-315.
[45] Nishiura Y, Yamada Y, Hara Y , et al. Repair of peripheral nerve defect with direct gradual lengthening of the proximal nerve stump in rats. Journal of Orthopaedic Research, 2006,24(12):2246-2253.
doi: 10.1002/jor.20280 pmid: 17013872
[46] Chen C, Hu J, Huang H , et al. Design of a smart nerve conduit based on a shape-memory polymer. Advanced Materials Technologies, 2016,1(4):1600015.
doi: 10.1002/admt.201600015
[47] Kai D, Tan M J, Prabhakaran M P , et al. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Colloids and Surfaces B: Biointerfaces, 2016,148:557-565.
doi: 10.1016/j.colsurfb.2016.09.035 pmid: 27690245
[48] Jha P, Danewalia S S, Sharma G , et al. Antimicrobial and bioactive phosphate-free glass-ceramics for bone tissue engineering applications. Materials Science and Engineering: C, 2018,86:9-17.
doi: 10.1016/j.msec.2018.01.002
[49] Rakhmatia Y D, Ayukawa Y, Furuhashi A , et al. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. Journal of Prosthodontic Research, 2013,57(1):3-14.
doi: 10.1016/j.jpor.2012.12.001 pmid: 23347794
[50] Hajiali F, Tajbakhsh S, Shojaei A . Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polymer Reviews, 2018,58(1):164-207.
doi: 10.1080/15583724.2017.1332640
[51] Wu S, Liu X ,Yeung K W K , et al.Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 2014,80(1):1-36.
doi: 10.1016/j.mser.2014.04.001
[52] Xie R, Hu J, Hoffmann O , et al. Self-fitting shape memory polymer foam inducing bone regeneration: a rabbit femoral defect study.Biochimica et Biophysica Acta (BBA)-General Subjects, 2018,1862(4):936-945.
doi: 10.1016/j.bbagen.2018.01.013 pmid: 29360569
[53] Wang Y J, Jeng U S, Hsu S . Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomaterials Science & Engineering, 2018,4(4):1397-1406.
doi: 10.1021/acsbiomaterials.8b00091
[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[3] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[4] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[5] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[6] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[7] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[8] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[9] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[10] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[11] 王佃亮. 组织器官三维构建及原位组织工程概念——组织工程连载之四[J]. 中国生物工程杂志, 2014, 34(8): 112-116.
[12] 王佃亮. 种子细胞——组织工程连载之三[J]. 中国生物工程杂志, 2014, 34(7): 108-113.
[13] 王佃亮. 组织工程的诞生与发展——组织工程 连载之一[J]. 中国生物工程杂志, 2014, 34(5): 122-129.
[14] 张志强, 黄向华, 赵林远. 微环境对细胞的影响以及仿生学在组织工程支架中的应用[J]. 中国生物工程杂志, 2014, 34(4): 101-109.
[15] 王佃亮. 组织工程产品的种类及应用——组织工程连载之六[J]. 中国生物工程杂志, 2014, 34(11): 125-129.