Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (6): 73-77    DOI: 10.13523/j.cb.20190610
研究报告     
壳聚糖在神经组织工程中的应用 *
武慧蓉,温朝辉()
哈尔滨医科大学附属第一医院 哈尔滨 150001
Application of Chitosan in Nerve Tissue Engineering
Hui-rong WU,Zhao-hui WEN()
Department of Neurology,The First Affiliated Hospital of Harbin Medical University,Harbin 150001,China
 全文: PDF(362 KB)   HTML
摘要:

功能性高分子材料壳聚糖(CS)及其复合其他材料作为组织工程的支架材料已在生物医学领域等方面取得了一定的进展。 CS自身的功能基团可聚合一些聚合物来增强其复合支架的各方面性能,从而使其应用范围更广泛,应用效率更高。在神经损伤中,CS支架材料对促进神经的再生和修复起着至关重要的作用,主要对CS在神经组织工程方面的应用研究做了简要概述。

关键词: 壳聚糖支架再生神经组织工程    
Abstract:

The functional polymer material chitosan (CS) and other composite materials have made some progress in the field of biomedicine as a scaffold material for tissue engineering. The functional groups of CS can polymerize some polymers to enhance the performance of all aspects of its composite scaffold, making it more versatile and more efficient. In nerve injury, CS scaffold material plays an important role in promoting nerve regeneration and repair,and mainly summarizes the application of CS in nerve tissue engineering.

Key words: Chitosan    Scaffold    Regeneration    Nerve tissue engineering
收稿日期: 2018-10-19 出版日期: 2019-07-12
ZTFLH:  R318.08  
基金资助: * 国家自然科学基金资助项目(51272058);* 国家自然科学基金资助项目(51873052)
通讯作者: 温朝辉     E-mail: wenzhaohui1968@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
武慧蓉
温朝辉

引用本文:

武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.

Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering. China Biotechnology, 2019, 39(6): 73-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190610        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I6/73

[1] Saravanan S, Vimalraj S, Thanikaivelan P , et al. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. International Journal of Biological Macromolecules, 2018,121:38-54.DOI: 10.1016/j.ijbiomac.2018.10.014.
doi: 10.1016/j.ijbiomac.2018.10.014
[2] Martins A F, Facchi S P, Follmann H D , et al. Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. International Journal of Molecular Sciences, 2014,15(11):20800-20832.
doi: 10.3390/ijms151120800
[3] Kumaraswamy R V, Kumari S, Choudhary R C , et al. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules, 2018,113:494-506.
doi: 10.1016/j.ijbiomac.2018.02.130
[4] Cheung R C, Ng T B, Wong J H . Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs, 2015,13(8):5156-5186.
doi: 10.3390/md13085156
[5] Shapira Y, Tolmasov M, Nissan M , et al. Comparison of results between chitosan hollow tube and autologous nerve graft in reconstruction of peripheral nerve defect: An experimental study. Microsurgery, 2016,36(8):664-671.
doi: 10.1002/micr.v36.8
[6] Shukla S K, Mishra A K, Arotiba O A . Chitosan-based nanomaterials: a state-of-the-art review. International Journal of Biological Macromolecules, 2013,59:46-58.
doi: 10.1016/j.ijbiomac.2013.04.043
[7] Li Y, Yu Z, Men Y , et al. Laminin-chitosan-PLGA conduit co-transplanted with Schwann and neural stem cells to repair the injured recurrent laryngeal nerve. Experimental and Therapeutic Medicine, 2018,16(2):1250-1258.
[8] Francesko A . Chitin, chitosan and derivatives for wound healing and tissue engineering.Advances in Biochemical Engineering/ Biotechnology, 2011,125:1-27.
[9] Zou W J, Chen Y X, Zhang X C , et al. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydr Polym, 2018,202:246-257.
doi: 10.1016/j.carbpol.2018.08.124
[10] Gnavi S, Barwig C, Freier T , et al. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. International Review of Neurobiology, 2013,109:1-62.
doi: 10.1016/B978-0-12-420045-6.00001-8
[11] 屈巍, 罗卓荆 . 高仿真壳聚糖支架修复神经缺损的有效性研究. 中国矫形外科杂志, 2010,18(5):421-425.
Qu W, Luo Z J . Efficacy of high-simulation chitosan scaffold for repairing nerve defects. Chinese Journal of Orthopaedics, 2010,18(5):421-425.
[12] Yamaguchi I, Itoh S, Suzuki M , et al. The chitosan prepared from crab tendons: II The chitosan/apatite composites and their application to nerve regeneration. Biomaterials, 2003,24(19):3285-3292.
doi: 10.1016/S0142-9612(03)00163-7
[13] Matsumoto I, Kaneko M, Oda M . Repair of intra-thoracic autonomic nerves using chitosan tubes. Interactive Cardiovascular and Thoracic Surgery, 2010,10(4):498-501.
doi: 10.1510/icvts.2009.227744
[14] Tanaka N, Matsumoto I, Suzuki M , et al. Chitosan tubes can restore the function of resected phrenic nerves. Interactive Cardiovascular and Thoracic Surgery, 2015,21(1):8-13.
doi: 10.1093/icvts/ivv091
[15] Li G, Xiao Q, Zhang L , et al. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration. Carbohydrate Polymers, 2017,171(9):39-49.
doi: 10.1016/j.carbpol.2017.05.006
[16] Yang Z, Duan H, Mo L , et al. The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials, 2010,31(18):4846-4854.
doi: 10.1016/j.biomaterials.2010.02.015
[17] Annabi N, Mithieux S M, Weiss A S , et al. Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. Biomaterials, 2010,31(7):1655-1665.
doi: 10.1016/j.biomaterials.2009.11.051
[18] Ji C, Annabi N, Khademhosseini A , et al. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomaterialia, 2011,7(4):1653-1664.
doi: 10.1016/j.actbio.2010.11.043
[19] Gonzalez-Perez F, Cobianchi S, Heimann C , et al. Stabilization, rolling, and addition of other extracellular matrix proteins to collagen hydrogels improve regeneration in chitosan guides for long peripheral nerve gaps in rats. Neurosurgery, 2017,80(3):465-474.
doi: 10.1093/neuros/nyw068
[20] Huang Y, Onyeri S, Siewe M , et al. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials, 2005,26(36):7616-7627.
doi: 10.1016/j.biomaterials.2005.05.036
[21] Chávez-Delgado M E, Mora-Galindo J, Gómez-Pinedo U , et al. Facial nerve regeneration through progesterone-loaded chitosan prosthesis A preliminary report. Journal of Biomedical Materials Research, 2003,67(2):702-711.
[22] Singh A, Shiekh P A, Das M , et al. Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: eabrication, characterization, and in vitro evaluation. Biomacromolecules, 2019,20(2):662-673.
doi: 10.1021/acs.biomac.8b01308
[23] Gonçalves N P, Oliveira H, Pêgo A P . A novel nanoparticle delivery system for in vivo targeting of the sciatic nerve: impact on regeneration. Nanomedicine, 2012,7(8):1167-1180.
doi: 10.2217/nnm.11.188
[24] Cao H, Liu T . The application of nanofibrous scaffolds in neural tissue engineering. Advanced Drug Delivery Reviews, 2009,61(12):1055-1064.
doi: 10.1016/j.addr.2009.07.009
[25] Liu Y C, Nelson T, Chakroff J , et al. Comparison of polyglycolic acid, polycaprolactone, and collagen as scaffolds for the production of tissue engineered intestine. J Biomed Mater Res Part B Appl Biomater, 2019,107(3):750-760.
doi: 10.1002/jbm.b.v107.3
[26] Prabhakaran M P, Venugopal J R, Chyan T T , et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Engineering, 2008,14(11):1787-1797.
doi: 10.1089/ten.tea.2007.0393
[27] 刘奔, 张彩顺, 高绪斌 , 等. 聚己内酯/壳聚糖神经导管复合骨髓间充质干细胞促进大鼠坐骨神经损伤修复的研究. 中国生物工程杂志, 2014,34(2):34-38.
doi: 10.13523/j.cb.20140206
Liu B, Zhang C S, Gao X B , et al. Study on the repair of rat sciatic nerve injury by polycaprolactone/chitosan nerve conduit combined with bone marrow mesenchymal stem cells. China Biotechnology, 2014,34(2):34-38.
doi: 10.13523/j.cb.20140206
[28] Xie F, Li Q F, Gu B , et al. In vitro and in vivo evaluation of a biodegradable chitosan-PLA composite peripheral nerve guide conduit material. Microsurgery, 2008,28(6):471-479.
doi: 10.1002/micr.v28:6
[29] Gu J, Hu W, Deng A , et al. Surgical repair of a 30mm long human median nerve defect in the distal forearm by implantation of a chitosan-PGA nerve guidance conduit. Journal of Tissue Engineering and Regenerative Medicine, 2012,6(2):163-168.
doi: 10.1002/term.v6.2
[30] Cao H, Liu T . The application of nanofibrous scaffolds in neural tissue engineering. Advanced Drug Delivery Reviews, 2009,61(12):1055-1064.
doi: 10.1016/j.addr.2009.07.009
[31] Simões M J, Amado S, Gärtner A , et al. Use of chitosan scaffolds for repairing rat sciatic nerve defects. Italian Journal of Anatomy and Embryology, 2010,115(3):190-210.
[32] Ni P L, Bi H Y, Zhao G , et al. Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids Surf B Biointerfaces, 2018,173:171-177.
[33] Jiao H, Yao J, Yang Y , et al. Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials, 2009,30(28):5004-5018.
doi: 10.1016/j.biomaterials.2009.05.059
[34] Wang X, Hu W, Cao Y , et al. Dog sciatic nerve regeneration across a 30mm defect bridged by a chitosan/PGA artificial nerve graft. Brain, 2005,128(Pt 8):1897-1910.
doi: 10.1093/brain/awh517
[35] Zhang L, Webster T J , Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today, 2009,4:66-80.
doi: 10.1016/j.nantod.2008.10.014
[36] Singh N, Chen J H, Koziol K K , et al. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale, 2016,8(15):8288-8299.
doi: 10.1039/C5NR06595J
[37] Lee S J, Zhu W, Nowicki M , et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. Journal of Neural Engineering, 2018,15(1):016018.
doi: 10.1088/1741-2552/aa95a5
[38] Zhou Z, Liu X, Wu W , et al. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomaterials Science, 2018,6(9):2375-2385.
doi: 10.1039/C8BM00553B
[39] Hu H, Ni Y C, Montana V , et al. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett, 2004,4(3):507-511.
doi: 10.1021/nl035193d
[40] Huang Y C, Hsu S H, Kuo W C , et al. Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth. Journal of Biomedical Materials Research, 2011,99(1):86-93.
[41] Solìs M Y, Panella G, Fioravanti G , et al. Biocompatibility of composites based on chitosan, apatite, and graphene oxide for tissue applications. J Biomed Mater Res A, 2018,106(6):1585-1594.
doi: 10.1002/jbm.a.v106.6
[42] Yamaguchi I, Itoh S, Suzuki M , et al. The chitosan/apatite composites and their application to nerve regeneration. Biomaterieals, 2003,24(19):3285-3292.
doi: 10.1016/S0142-9612(03)00163-7
[43] Itoh S, Yamaguchi I, Suzuki M , et al. Hydroxyapatite coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res, 2003,993(1-2):111-123
doi: 10.1016/j.brainres.2003.09.003
[44] Saderi N, Rajabi M, Akbari B , et al. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. Journal of Materials Science: Materials in Medicine, 2018,29(9):134.
doi: 10.1007/s10856-018-6144-3
[1] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[2] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[3] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[4] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[5] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[6] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[7] 赵悦,吴昊,乔建军. 细菌细胞壁生长调控机制研究进展 *[J]. 中国生物工程杂志, 2018, 38(8): 92-99.
[8] 刘璐,殷亮,黄飞,张勇,刘倩,冯雁. 利用SpyTag/SpyCatcher构建胞内自组装多酶复合体实现高效生物合成 *[J]. 中国生物工程杂志, 2018, 38(7): 75-82.
[9] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[10] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.
[11] 何官榕,何碧珠,吴沙沙,石京山,陈集双,兰思仁. 多叶斑叶兰繁殖体系建立及基于转录组的发育调控途径功能基因研究[J]. 中国生物工程杂志, 2018, 38(12): 57-64.
[12] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[13] 赵许朋,赵晓朋,施豪,陈学梅,姜婷,刘燕. ‘贵长’猕猴桃叶片高效直接再生体系的建立 *[J]. 中国生物工程杂志, 2018, 38(10): 48-54.
[14] 安婷,季静,王昱蓉,马志刚,王罡,李倩,杨丹,张松皓. 百合鳞片的诱导分化及遗传转化效率分析[J]. 中国生物工程杂志, 2018, 38(1): 25-31.
[15] 徐竹, 诸葛启钏, 黄李洁. 干细胞3D支架的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 112-117.