目的: 通过研究miR-17-5p对自噬相关基因ATG7的靶向调控机制和对细胞自噬的作用,探究miR-17-5p在结核分枝杆菌介导的自噬途径中的作用及其机制。方法: 生物信息学分析得到miR17-5p的靶基因ATG7,通过成功构建载体ATG7野生型(pMirGLO-ATG7-3'UTR-WT)和突变型,利用双萤光素酶报告系统、Western blot验证miR-17-5p和ATG7的靶向关系,同时构建结核分枝杆菌(H37Ra)感染的人源性THP-1巨噬细胞模型,将做不同处理的细胞分为三组:miR-17-5p mimics、miR-17-5p inhibitor、miR-17-5p nc。通过实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)检测H37Ra感染对miR-17-5p表达量的影响,并且进一步通过Western blot、免疫荧光观察检测LC3蛋白的表达量和自噬小体的数量。结果: MTB感染能够引起miR-17-5p的下调,随着感染复数的增加有明显的降低。而生物信息学预测结果显示miR-17-5p与ATG7具有靶向性,双萤光素酶报告实验、Western blot验证miR-17-5p能够和ATG7靶向结合,并对其进行负调控。进一步通过Western blot、免疫荧光观察发现miR-17-5p mimics组LC3Ⅱ的表达下调,自噬小体表达降低,而miR-17-5p inhibitor组相反。其中对H37Ra感染组与未感染组之间比较,ATG7和LC3Ⅱ蛋白表达明显增强。结论: miR-17-5p直接靶向结合ATG7 3'UTR抑制自噬,在巨噬细胞抗MTB过程中发挥作用。
环氧化物水解酶能够对外消旋环氧化物进行动力学拆分保留单构型的环氧化物。测定了菜豆环氧化物水解酶 (PvEH1) 针对苯基缩水甘油醚及其甲基衍生物的催化特性,并基于分子对接及多序列比对分析确定7个突变位点,通过单点和组合突变对PvEH1进行改造,以期改善PvEH1对邻甲基苯基缩水甘油醚 (1a)的催化特性。底物谱分析表明PvEH1对1a的催化活性 (157.2U/g湿细胞) 和对映选择性 (E=5.6) 最高。单点突变结果显示E.coli/pveh1 L105I和E.coli/pveh1 V106I对1a的催化活性和对映选择性均有明显提高;L105I和V106I位组合突变菌株E.coli/pveh1 L105I/V106I的催化活性 (493.8U/g湿细胞) 是E.coli/pveh1的3.1倍,对映选择性 (E=8.3) 也提高至E.coli/pveh1的1.5倍。纯化后PvEH1 L105I/V106I的催化活性为17.6U/mg,是PvEH1的1.5倍,对1a的催化效率提高至PvEH1的2.1倍。SDS-PAGE分析表明提高了蛋白质的可溶性表达量。利用E.coli/pveh1 L105I/V106I全细胞催化100mmol/L 1a水解动力学拆分获得手性纯(R)-1a (ee>96%) 的产率和时空产率分别为31.2%和5.12g/(L·h),因此,在手性纯(R)-1a的制备中,E.coli/pveh1 L105I/V106I是一种颇具潜力的生物催化剂。
目的: 利用新型纳米森林材料,构建一种操作简单、检测快速、灵敏度高的用于现场检测的自驱动微流控芯片。方法: 利用MEMS加工技术制备出具有优良光学性能和大表面积的石英纳米森林结构微流道,对该纳米森林结构的高度、宽度/横向尺寸、密度、表面积、光学性能、毛细驱动效果、荧光增敏效果做出评价,利用双抗体夹心的方法进行蓖麻毒素的检测。结果: 纳米纤维锥底直径200~300nm,高度约1.0μm,纳米森林的密度约为10个/μm 2,估测表面积比底面积达5∶1以上。其在波长为680nm处的透光率达89.5%,驱动流速约5mm/s,与平面结构相比,其饱和荧光显色成倍提高。蓖麻毒素的检测限低于10pg/ml,在 10~6 250pg/ml范围内具有较好线性关系。结论: 基于纳米森林结构,成功构建了一种具有超大表面积和高灵敏度的毛细自驱动微流控芯片。
目的: 基于GC-FID法,对狂犬病疫苗生产过程中采用的β-丙内酯灭活剂进行了含量及稳定性研究。方法: 气相色谱条件,采用Agilent DB-624(30m×0.530mm×3.00μm)毛细管柱;升温程序,初始温度为80℃,保持1min,以20℃/min的速率升温至200℃,保持3min;色谱柱流量,3ml/min;检测器温度,250℃;进样口温度,150℃;载气,氮气,线速度,25cm/s;进样量,1μl,分流比为2∶1;进样方式,手动进样。结果: 以乙腈作为稀释剂,BPL在1∶100~1∶32 000范围内线性关系良好(R 2≥0.999)。在1∶200、1∶1 000、1∶8 000 三个浓度水平下,加标回收率在95.04%~116.86%,相对标准偏差(RSD)为2.6%~3.2%,检测限为0.112μg/ml。结论: 方法简便、专属性强、稳定且在室温条件下操作,大大降低了对试验条件和技术操作的要求,能够满足灭活狂犬病病毒工艺中对BPL检测的需求。
利用甲醇营养型毕赤酵母生产猪α干扰素(pIFN-α),诱导过程一般在高细胞密度、定值控制甲醇浓度于5~10g/L下进行,此时、溶解氧浓度(DO)自然下降到接近于0的水平。如果高好氧的毕赤酵母长期处在高甲醇/低DO的诱导浓度环境会导致其代谢活性恶化,胞内甲醇积累严重,pIFN-α表达生产效率低。为此,提出了一种甲醇周期诱导控制策略来强化pIFN-α生产。先将甲醇控制于高浓度达7h,再降低甲醇流加速率,将DO控制在20%左右约4h,一共重复6个循环。采用上述周期控制策略,毕赤酵母代谢活性可以长期维持在较高水平;胞内甲醇处于极低水平(≤ 0.003g/g DCW),解除了甲醇毒性效应;pIFN-α活性达到3.90×10 7IU/ml的最高水平,是定值控制甲醇浓度时的1.86倍。
固定化酶作为一种绿色高效的生物催化剂,其性能远超游离酶。目前酶的固定化技术适用范围仍然较小,酶的研究范围多停留在模型酶阶段,扩大固定化酶的研究范围具有十分重要的意义。金属有机骨架材料(MOFs)作为酶固定化的载体在近些年得到了广泛的探索,但是具有生物功能的酶-MOFs复合材料的许多特性仍有待挖掘。采用仿生矿化的合成方法将5-羟甲基糠醛氧化酶(HMFO)固定到以沸石咪唑酯(ZIF-8)为代表的MOFs材料中,制备得到一种新的生物催化剂HMFO@ZIF-8,扫描电子显微镜表征其形态区别于经典的菱形十二面体。采用考马斯亮蓝法测定蛋白质浓度,计算得到酶的固定化效率达到89.0%。HMFO@ZIF-8催化5-羟甲基糠醛的转化率达到84.3%,收率和选择性均高于游离酶。拓展了MOFs固定化酶的研究范围,为研究其他生物大分子复合材料的生物催化剂提供一定的借鉴意义。
近年来细胞穿膜肽(cell-penetrating peptides,CPP)在生物医药领域被广泛应用,它为生物分子的胞内递送提供了有效的策略。关注CPP在肿瘤治疗及疾病诊断中的作用,并重点介绍其在肿瘤靶向治疗和医学影像诊断中的应用及优势。同时,根据CPP在药物传递系统中的特点,改进CPP存在的不足,扩大其联合用药的可能性,这也成为CPP研究的热点。对CPP及其在肿瘤等疾病的诊断及治疗中的应用作一综述,并简述其优化及改进策略,以期促进CPP在临床中的应用。
肿瘤免疫治疗是通过调节机体的免疫功能来控制和杀伤肿瘤的一种治疗手段。针对免疫检查点的治疗等一系列临床突破使得肿瘤的免疫治疗受到了广泛重视。目前,抗体治疗和过继性细胞治疗是肿瘤免疫治疗的主要方式,但是这些方法仍具有副作用较强,实体瘤治疗难以实现,治疗费用高昂等缺点。因此改进和发展更加高效、安全、低成本的新技术仍十分必要。适配体是利用指数富集的配体系统进化技术筛选得到的单链寡核苷酸,有核酸“抗体”之称。适配体具有低免疫原性、组织穿透力强、易于化学合成与修饰等优势,且与其靶标的结合具有较好亲和力和特异性,可像抗体一样实现肿瘤的免疫治疗。对适配体在肿瘤免疫治疗相关技术中的新应用作一综述,主要包括基于免疫检查点的抗肿瘤作用、双特异性适配体的肿瘤免疫治疗、适配体靶向递送siRNA的肿瘤免疫治疗和适配体联合抗体的肿瘤免疫治疗等方面。
高分子囊泡作为一种新型的纳米药物载体,具有生物可降解性、稳定性、生物相容性及可修饰的多功能化等特点。改变聚合物种类和亲水-疏水嵌段的比例,可以制备具有不同形态和膜特性的高分子囊泡。经过修饰后的高分子囊泡,可赋予其更多的功能,从而实现药物的控释和药物靶向的能力。对高分子囊泡的结构、组成和制备方法以及在药物释放体系的应用等方面进行了较为详细的综述,目的是了解高分子囊泡最新研究进展以及未来科学家们亟须解决的重要问题。
功能性高分子材料壳聚糖(CS)及其复合其他材料作为组织工程的支架材料已在生物医学领域等方面取得了一定的进展。 CS自身的功能基团可聚合一些聚合物来增强其复合支架的各方面性能,从而使其应用范围更广泛,应用效率更高。在神经损伤中,CS支架材料对促进神经的再生和修复起着至关重要的作用,主要对CS在神经组织工程方面的应用研究做了简要概述。
真核细胞内膜系统由细胞内相互联系的膜状细胞器组成,包括外泌体的生成和自噬过程,对应激反应和维持细胞内稳态起着重要作用。外泌体是含有蛋白质与核酸内容物的多泡体分泌到体外形成的胞外囊泡,而自噬是溶酶体依赖性的降解和循环再利用的过程。研究发现,外泌体的生成和自噬之间有着共同的分子机制,二者存在实质性的交互通信。对外泌体的生成和自噬的过程,包括二者与溶酶体之间的关系进行综述。
细胞自噬是一种进化上高度保守的胞内降解系统,旨在实现维持细胞稳态以应对不同的细胞应激。在生理状态下,细胞自噬水平通常较低;而在氧化应激、营养饥饿和各种病原体刺激下会显著上调。过去的许多研究都表明细胞自噬在多种组织细胞和生理功能调控中有重要意义。早期研究发现了细胞自噬和中性粒细胞死亡之间的联系,这是与炎症密切关联的必要过程。在人类系统和小鼠模型中表明,细胞自噬在中性粒细胞驱动的炎症和防御病原体方面起着至关重要的作用。细胞自噬对中性粒细胞主要功能的发挥至关重要,包括脱颗粒、活性氧产生和中性粒细胞胞外诱捕网的释放。细胞自噬对中性粒细胞分化以及主要功能(包括脱颗粒、活性氧产生和中性粒细胞胞外诱捕网的释放)的发挥至关重要。集中讨论了细胞自噬对中性粒细胞的作用,即从中性粒细胞在骨髓中产生到炎症反应和NETosis细胞死亡。
萜类化合物具有可观的商业价值,但生产过程复杂,产量低,利用微生物异源合成萜类化合物已成为热点。谷氨酸棒状杆菌内含合成萜类色素的途径,具有异源合成萜类化合物的天然优势和研究前景。首次对谷氨酸棒状杆菌合成萜类化合物进行了综述,从萜类合成途径、关键酶和全局调控机制三个方面进行了途经介绍。概述了谷氨酸棒状杆菌中单萜、倍半萜、四萜类化合物的异源合成,并对利用谷氨酸棒状杆菌高效合成萜类化合物所需解决的问题进行讨论,为谷氨酸棒状杆菌高效合成萜类化合物提供建议。
近年来,各国政府、高校、企业和公众高度关注人类微生物组与健康研究,旨在全面系统地解析微生物组的结构和功能,以及生理调控机制,为解决健康问题提供新思路,相关研究带动了人类微生物组行业内益生菌、益生元类保健食品和膳食补充剂、粪菌移植产业的发展,也催生了微生物组检测及健康指导、微生态药物产业的崛起。通过梳理全球人类微生物组产业现状,分析相关产业发展面临的主要瓶颈及未来发展方向,并针对中国人类微生物组产业提出了具体的发展建议。