Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (6): 1-8    DOI: 10.13523/j.cb.20190601
研究报告     
miR-17-5p靶向自噬相关蛋白ATG7调控巨噬细胞抗结核分枝杆菌感染作用的研究 *
洪丹彤1,张帆1,王淑娥1,王红霞1,刘昆梅3,徐广贤1,2,霍正浩1,4,**(),郭乐1,2,**()
1 宁夏医科大学临床医学院 银川 7500212
2 宁夏医科大学总医院 宁夏临床病原微生物重点实验室 银川 750021
3 宁夏医科大学颅脑疾病重点实验室 银川 750021
4 宁夏医科大学基础医学院 宁夏生殖与遗传重点实验室 银川 750021
miR-17-5p Targeting Autophagy Related Protein ATG7 Regulates Macrophages against Mycobacterium tuberculosis Infection
Dan-tong HONG1,Fan ZHANG1,Shu-e WANG1,Hong-xia WANG1,Kun-mei LIU3,Guang-xian XU1,2,Zheng-hao HUO1,4,**(),Le GUO1,2,**()
1 School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
2 Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
3 Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
4 Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
 全文: PDF(1506 KB)   HTML
摘要:

目的: 通过研究miR-17-5p对自噬相关基因ATG7的靶向调控机制和对细胞自噬的作用,探究miR-17-5p在结核分枝杆菌介导的自噬途径中的作用及其机制。方法: 生物信息学分析得到miR17-5p的靶基因ATG7,通过成功构建载体ATG7野生型(pMirGLO-ATG7-3'UTR-WT)和突变型,利用双萤光素酶报告系统、Western blot验证miR-17-5p和ATG7的靶向关系,同时构建结核分枝杆菌(H37Ra)感染的人源性THP-1巨噬细胞模型,将做不同处理的细胞分为三组:miR-17-5p mimics、miR-17-5p inhibitor、miR-17-5p nc。通过实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)检测H37Ra感染对miR-17-5p表达量的影响,并且进一步通过Western blot、免疫荧光观察检测LC3蛋白的表达量和自噬小体的数量。结果: MTB感染能够引起miR-17-5p的下调,随着感染复数的增加有明显的降低。而生物信息学预测结果显示miR-17-5p与ATG7具有靶向性,双萤光素酶报告实验、Western blot验证miR-17-5p能够和ATG7靶向结合,并对其进行负调控。进一步通过Western blot、免疫荧光观察发现miR-17-5p mimics组LC3Ⅱ的表达下调,自噬小体表达降低,而miR-17-5p inhibitor组相反。其中对H37Ra感染组与未感染组之间比较,ATG7和LC3Ⅱ蛋白表达明显增强。结论: miR-17-5p直接靶向结合ATG7 3'UTR抑制自噬,在巨噬细胞抗MTB过程中发挥作用。

关键词: 自噬结核分支杆菌miR-17-5pATG7    
Abstract:

Objective:To explore the role and mechanism of miR-17-5p in the autophagy pathway mediated by Mycobacterium tuberculosis by studying the regulatory mechanism of miR-17-5p on autophagy-related gene ATG7 and its effect on cell autophagy. Methods: The target gene ATG7 of miR-17-5p was obtained by bioinformatics analysis. The wild-type(pMirGLO-ATG7-3'UTR-WT) and mutant vector of ATG7 were successfully constructed. The targeting relationship between miR-17-5p and ATG7 was verified by double luciferase reporting system and Western blot. THP-1-derived macrophages infected by Mycobacterium tuberculosis (H37Ra) were divided into three groups: miR-17-5p mimics, miR-17-5p inhibitors, and miR-17-5p nc. The effect of H37Ra infection on the expression of miR-17-5p was detected by quantitative real-time PCR (qRT-PCR). The expression of LC3 protein and the number of autophagosomes were detected by Western blot and immunofluorescence. Results: MTB infection can cause miR-17-5p down-regulation, with the increase of infection plural decreased significantly. Bioinformatics predictions showed that miR-17-5p and ATG7 were targeted. Dual luciferase reporter assay and Western blot confirmed that miR-17-5p could bind to ATG7 and negatively regulate it. Western blot and immunofluorescence assay showed that the expression of LC3 II was down-regulated and the expression of autophagosomes was down-regulated in the miR-17-5p mimics group, but the reverse was found in the miR-17-5p inhibitor group. The expression of ATG7 and LC3 II protein in H37Ra infected group was higher than that in uninfected group. Conclusion: miR-17-5p directly targets ATG7 3'UTR to inhibit autophagy and plays a role in the anti-MTB effect of macrophages.

Key words: Autophagy    Mycobacterium tuberculosis    miR-17-5p    ATG7
收稿日期: 2018-12-21 出版日期: 2019-07-12
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81760359);国家自然科学基金(31600744);宁夏高等学校科学研究项目资助项目(NGY2017088)
通讯作者: 霍正浩,郭乐     E-mail: huozhh@nxmc.edu.cn;guole@nxmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
洪丹彤
张帆
王淑娥
王红霞
刘昆梅
徐广贤
霍正浩
郭乐

引用本文:

洪丹彤,张帆,王淑娥,王红霞,刘昆梅,徐广贤,霍正浩,郭乐. miR-17-5p靶向自噬相关蛋白ATG7调控巨噬细胞抗结核分枝杆菌感染作用的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 1-8.

Dan-tong HONG,Fan ZHANG,Shu-e WANG,Hong-xia WANG,Kun-mei LIU,Guang-xian XU,Zheng-hao HUO,Le GUO. miR-17-5p Targeting Autophagy Related Protein ATG7 Regulates Macrophages against Mycobacterium tuberculosis Infection. China Biotechnology, 2019, 39(6): 1-8.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190601        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I6/1

图1  H37Ra以不同感染复数(MOI)处理THP-1细胞后miR-17-5p的表达水平
图2  萤光素酶报告基因重组质粒的鉴定
图3  miR-17-5p对ATG7靶向性的鉴定
图4  miR-17-5p对自噬流及自噬小体形成的作用
[1] Amere G A, Nayak P, Salindri A D , et al. Contribution of smoking to tuberculosis incidence and mortality in high-tuberculosis-burden countries. American Journal of Epidemiology, 2018,187(9):1846-1855.
doi: 10.1093/aje/kwy081
[2] World Health Organization. Global tuberculosis report 2018. [2018-12-08]. https://www.aidsdatahub.org/global-tuberculosis-report-2018-who-2018.
[3] Das R, Koo M S, Kim B H , et al. Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(32):E2997-3006.
doi: 10.1073/pnas.1301128110
[4] Paik S, Kim J K, Chung C , et al. Autophagy: A new strategy for host-directed therapy of tuberculosis. Virulence, 2018,10(1):1-12.
[5] Kim K H, Lee M S . Autophagy--a key player in cellular and body metabolism. Nature Reviews Endocrinology, 2014,10(6):322-337.
doi: 10.1038/nrendo.2014.35
[6] Papackova Z, Cahova M . Important role of autophagy in regulation of metabolic processes in health, disease and aging. Physiological Research, 2014,63(4):409-420.
[7] Frudd K, Burgoyne T, Burgoyne J R . Oxidation of atg3 and atg7 mediates inhibition of autophagy. Nature Communications, 2018,9(1):95.
doi: 10.1038/s41467-017-02352-z
[8] Siddle K J, Tailleux L, Deschamps M , et al. Bacterial infection drives the expression dynamics of microRNAs and their isomiRs. PLoS Genetics, 2015,11(3):e1005064.
doi: 10.1371/journal.pgen.1005064
[9] Li H, Jin X, Chen B , et al. Autophagy-regulating microRNAs: potential targets for improving radiotherapy. Journal of Cancer Research and Clinical Oncology, 2018,144(9):1623-1634.
doi: 10.1007/s00432-018-2675-8
[10] Zhang G, Liu X, Wang W , et al. Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell Cycle, 2016,15(18):2527-2538.
doi: 10.1080/15384101.2016.1215386
[11] Yang X, Bai F, Xu Y , et al. Intensified Beclin-1 mediated by low expression of mir-30a-5p promotes chemoresistance in human small cell lung cancer. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2017,43(3):1126-1139.
[12] Li W, Jiang Y, Wang Y , et al. MiR-181b regulates autophagy in a model of Parkinson’s disease by targeting the PTEN/Akt/mTOR signaling pathway. Neuroscience Letters, 2018,675:83-88.
doi: 10.1016/j.neulet.2018.03.041
[13] Yu K, Li N, Cheng Q , et al. MiR-96-5p prevents hepatic stellate cell activation by inhibiting autophagy via ATG7. Journal of Molecular Medicine, 2018,96(1):65-74.
doi: 10.1007/s00109-017-1593-6
[14] Etna M P, Sinigaglia A, Grassi A , et al. Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells. PLoS Pathogens, 2018,14(1):e1006790.
doi: 10.1371/journal.ppat.1006790
[15] Kim J K, Lee H M, Park K S , et al. Mir144 * inhibits antimicrobial responses against mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2. Autophagy, 2017,13(2):423-441.
doi: 10.1080/15548627.2016.1241922
[16] Kim J K, Yuk J M, Kim S Y , et al. MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection. Journal of Immunology, 2015,194(11):5355-5365.
doi: 10.4049/jimmunol.1402557
[17] Ouimet M, Koster S, Sakowski E , et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nature Immunology, 2016,17(6):677-686.
[18] Ota A, Tagawa H, Karnan S , et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Research, 2004,64(9):3087-3095.
doi: 10.1158/0008-5472.CAN-03-3773
[19] Yang F, Lei Y, Zhou M , et al. Development and application of a recombination-based library versus library high- throughput yeast two-hybrid (RLL-Y2H) screening system. Nucleic Acids Research, 2018,46(3):e17.
doi: 10.1093/nar/gkx1173
[20] Gomez-Sanchez R, Yakhine-Diop S M, Rodriguez-Arribas M , et al. MRAN and protein dataset of autophagy markers (LC3 and p62) in several cell lines. Data In Brief, 2016,7:641-647.
doi: 10.1016/j.dib.2016.02.085
[21] Hmama Z, Pena-Diaz S, Joseph S , et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunological Reviews, 2015,264(1):220-232.
doi: 10.1111/imr.2015.264.issue-1
[22] Wan G, Xie W, Liu Z , et al. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy, 2014,10(1):70-79.
doi: 10.4161/auto.26534
[23] Xu G, Zhang Z, Xing Y , et al. MicroRNA-149 negatively regulates TLR-triggered inflammatory response in macrophages by targeting MyD88. Journal of Cellular Biochemistry, 2014,115(5):919-927.
doi: 10.1002/jcb.v115.5
[24] Zulauf K E, Sullivan J T, Braunstein M . The secA2 pathway of mycobacterium tuberculosis exports effectors that work in concert to arrest phagosome and autophagosome maturation. PLoS Pathogens, 2018,14(4):e1007011.
doi: 10.1371/journal.ppat.1007011
[25] Sahu S K, Kumar M, Chakraborty S , et al. MicroRNA 26a(miR-26a)/KLF4 and CREB-C/EBPbeta regulate innate immune signaling, the polarization of macrophages and the trafficking of mycobacterium tuberculosis to lysosomes during infection. PLoS Pathogens, 2017,13(5):e1006410.
doi: 10.1371/journal.ppat.1006410
[26] Chen Z, Wang T, Liu Z , et al. Inhibition of autophagy by miR-30A induced by mycobacteria tuberculosis as a Possible mechanism of immune escape in human macrophages. Japanese Journal of Infectious Diseases, 2015,68(5):420-424.
doi: 10.7883/yoken.JJID.2014.466
[27] Panneerdoss S, Viswanadhapalli S, Abdelfattah N , et al. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells. Nature Communications, 2017,8(1):598.
doi: 10.1038/s41467-017-00590-9
[28] Cao W, Qian G, Luo W , et al. MiR-125b is downregulated in systemic lupus erythematosus patients and inhibits autophagy by targeting UVRAG. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2018,99:791-797.
[29] Wang N, Yang L, Zhang H , et al. MicroRNA-9a-5p alleviates ischemia injury after focalcerebral ischemia of the rat by targeting ATG5-Mediated autophagy. Cellular Physiology And Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 2018,45(1):78-87
[30] Wang X X, Zhang R, Li Y . Expression of the miR-148/152 family in acute myeloid leukemia and its clinical significance. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2017,23:4768-4778.
[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[3] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[4] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[5] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[6] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[7] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[8] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[9] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[10] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.
[11] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[12] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[13] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[14] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.
[15] 詹蕙璐,白莹,庄严,孟娟,赵海洋. 纳米材料诱导自噬引发保护作用的研究进展[J]. 中国生物工程杂志, 2019, 39(12): 64-72.