Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (6): 32-40    DOI: 10.13523/j.cb.20190605
研究报告     
甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *
严建,贾禄强,丁健,史仲平()
江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control
Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI()
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(1030 KB)   HTML
摘要:

利用甲醇营养型毕赤酵母生产猪α干扰素(pIFN-α),诱导过程一般在高细胞密度、定值控制甲醇浓度于5~10g/L下进行,此时、溶解氧浓度(DO)自然下降到接近于0的水平。如果高好氧的毕赤酵母长期处在高甲醇/低DO的诱导浓度环境会导致其代谢活性恶化,胞内甲醇积累严重,pIFN-α表达生产效率低。为此,提出了一种甲醇周期诱导控制策略来强化pIFN-α生产。先将甲醇控制于高浓度达7h,再降低甲醇流加速率,将DO控制在20%左右约4h,一共重复6个循环。采用上述周期控制策略,毕赤酵母代谢活性可以长期维持在较高水平;胞内甲醇处于极低水平(≤ 0.003g/g DCW),解除了甲醇毒性效应;pIFN-α活性达到3.90×10 7IU/ml的最高水平,是定值控制甲醇浓度时的1.86倍。

关键词: 毕赤酵母甲醇周期控制溶解氧浓度猪α干扰素    
Abstract:

In the process of expressing porcine interferon-α (pIFN-α) by methylotrophic Pichia pastoris under high cells density, methanol concentration is generally controlled at relatively high levels of 5-10g/L with the dissolved oxygen concentration (DO) naturally declining to near 0% level. Heterologous proteins induction by P. pastoris is an extremely high aerobic system. If P. pastoris is subject to the environments of high methanol concentration and low DO for a long period, the cells metabolic activity and heterologous protein expression efficiency of P. pastoris would significantly deteriorate; intracellular methanol could severely accumulate, and the intracellular methanol can not be effectively oxidized by/energizing for methanol dissimilation route to synthesize the targeted protein. A novel periodic methanol induction control strategy was proposed and implemented at 20℃. During the induction period, methanol was firstly controlled at the high concentration level of 8-10g/L with DO level naturally staying at about 0% for 7h. Then raising/maintaining DO around 20% by reducing methanol feeding rate. By doing so, methanol concentration naturally reduced to low level of 0-1g/L, and then the environment of high DO/low methanol concentration was created and kept for another 4h. A total of 6 such cycles was repeated. By periodically shifting methanol concentration and DO in between “high/low” and “low/high” environments, the metabolic activity of P. pastoris could be recovered and maintained at higher levels for longer time; intracellular methanol concentration could be reduced to a very low level (≤ 0.003g/g DCW) but without deteriorating pIFN-α induction, the methanol toxicity was greatly relieved. As a result, pIFN-α activity reached the highest level of 3.90×10 7IU/ml, which was 86% higher than that using the traditional constant methanol concentration control strategy. The proposed periodic methanol induction control strategy showed its effectiveness in pIFN-α production and would supply the useful information/reference for other heterologous proteins fermentation processes.

Key words: Pichia pastoris    Methanol    Periodic control    DO    pIFN-α
收稿日期: 2018-11-05 出版日期: 2019-07-12
ZTFLH:  Q815  
基金资助: * 国家自然科学基金(21606106);江苏省自然科学基金资助项目(BK20150127);江苏省自然科学基金资助项目(BK20160162)
通讯作者: 史仲平     E-mail: zpshi@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
严建
贾禄强
丁健
史仲平

引用本文:

严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.

Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control. China Biotechnology, 2019, 39(6): 32-40.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190605        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I6/32

图1  不同诱导控制策略下的pIFN-α发酵生产性能
图2  实施不同诱导控制策略时pIFN-α的SDS-PAGE分析结果
图3  不同诱导策略下胞内AOX活性变化和甲醇积累情况
图4  不同诱导策略下胞内FLD和FDH活性变化情况
图5  不同诱导策略下的甲醇比消耗速率、OUR、CER和RQ的变化
[1] Cheng C, Huang Y L, Yang S T . A novel feeding strategy for enhanced plasmid stability and protein production in recombinant yeast fed-batch fermentation. Biotechnology and Bioengineering, 1997,56(1):23-31.
doi: 10.1002/(ISSN)1097-0290
[2] Ye K, Shijo M, Jin S , et al. Efficient production of vitamin B12 from propionic acid bacteria under periodic variation of dissolved oxygen concentration. Journal of Fermentation and Bioengineering, 1996,82(5):484-491.
doi: 10.1016/S0922-338X(97)86988-7
[3] 申渝, 葛旭萌, 白凤武 . 初始条件对高浓度乙醇连续发酵过程的影响及振荡行为提高发酵效率的机理分析. 生物工程学报, 2010,26(5):604-609.
Shen Y, Ge X M, Bai F W . Impact of fermentation system initial status on oscillations in very high gravity ethanol continuous fermentation process and analysis of fermentation efficiency improvement. Chinese Journal of Biotechnology, 2010,26(5):604-609.
[4] 马善康, 李强, 顾小勇 . 双碳源交替刺激毕赤酵母高效表达人尿激酶原. 过程工程学报, 2002,5(2):448-451.
Ma S K, Li Q, Gu X Y . High expression of human pro-urokinase gene in Pichia pastoris through feeding two carbon sources alternatively. The Chinese Journal of Process Engineering, 2002,5(2):448-451.
[5] Cos O, Ramón R, Montesinos J L , et al. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microbial Cell Factories, 2006,5(1):17.
doi: 10.1186/1475-2859-5-17
[6] Çelik E, Çalik P . Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012,30(5):1108-1118.
doi: 10.1016/j.biotechadv.2011.09.011
[7] Idiris A, Tohda H, Kumagai H , et al. Engineering of protein secretion in yeast: strategies and impact on protein production. Applied Microbiology and Biotechnology, 2010,86(2):403-417.
doi: 10.1007/s00253-010-2447-0
[8] Ding J, Gao M J, Hou G L , et al. Stabilizing porcine interferon-α production by Pichia pastoris with an ethanol on-line measurement based DO-Stat glycerol feeding strategy. Journal of Chemical Technology & Biotechnology, 2014,89(12):1948-1953.
[9] 高敏杰 . 基于智能工程和代谢调控的毕赤酵母发酵过程控制研究. 无锡: 江南大学, 2012.
Gao M J . Process control of Pichia pastoris fermentation based on intelligent engineering and metabolic regulation. Wuxi: Jiangnan University, 2012.
[10] Suye S I, Ogawa A, Yokoyama S , et al. Screening and identification of Candida methanosorbosa as alcohol oxidase-producing methanol using yeast. Agricultural and Biological Chemistry, 1990,54(5):1297-1298.
[11] Jia L Q, Tu T Y, Huai Q Q , et al. Enhancing monellin production by Pichia pastoris at low cell induction concentration via effectively regulating methanol metabolism patterns and energy utilization efficiency. PLoS One, 2017,12(10):e0184602.
doi: 10.1371/journal.pone.0184602
[12] Jin H, Liu G Q, Ye X F , et al. Enhanced porcine interferon-α production by recombinant Pichia pastoris with a combinational control strategy of low induction temperature and high dissolved oxygen concentration. Biochemical Engineering Journal, 2010,52(1):91-98.
doi: 10.1016/j.bej.2010.07.009
[13] Yu R S, Dong S J, Zhu Y M , et al. Effective and stable porcine interferon-α production by Pichia pastoris fed-batch cultivation with multi-variables clustering and analysis. Bioprocess and Biosystems Engineering, 2010,33(4):473-483.
doi: 10.1007/s00449-009-0356-3
[14] Shi H, Shimizu K . On-line metabolic pathway analysis based on metabolic signal flow diagram. Biotechnology and Bioengineering, 1998,58(2-3):139-148.
doi: 10.1002/(ISSN)1097-0290
[15] Schütte H, Flossdorf J, Sahm H , et al. Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. European Journal of Biochemistry, 1976,62(1):151-160.
doi: 10.1111/ejb.1976.62.issue-1
[16] 金虎 . 毕赤酵母高效发酵生产猪干扰素过程的优化与代谢调控. 无锡: 江南大学, 2011.
Jin H . Fermentation optimization and metabolic regulation of porcine interferon-α expression by recombinant Pichia pastoris. Wuxi: Jiangnan University, 2011.
[17] Cereghino J L, Cregg J M . Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 2000,24(1):45-66.
doi: 10.1111/j.1574-6976.2000.tb00532.x
[18] Ponte X, Montesinos-Seguí J L, Valero F . Bioprocess efficiency in Rhizopus oryzae lipase production by Pichia pastoris under the control of PAOX1 is oxygen tension dependent. Process Biochemistry, 2016,51(12):1954-1963.
doi: 10.1016/j.procbio.2016.08.030
[19] Jia L Q, Mpofu E, Tu T Y , et al. Transcriptional analysis for carbon metabolism and kinetic modeling for heterologous proteins productions by Pichia pastoris in induction process with methanol/sorbitol co-feeding. Process Biochemistry, 2017,59:159-166.
doi: 10.1016/j.procbio.2017.05.011
[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[5] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[6] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[7] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[8] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[9] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[10] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[11] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[12] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[13] 黄鹏,杜望春,施尉珺,饶玉良,孙庆文,张宁. 人源类溶菌酶蛋白6的功能研究及生理特性分析 *[J]. 中国生物工程杂志, 2018, 38(3): 1-8.
[14] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.
[15] 黄鹏,阎丽萍,张宁,石金磊. 利用GAP启动子在毕赤酵母中组成型表达人鹅型溶菌酶2 *[J]. 中国生物工程杂志, 2018, 38(10): 55-63.