Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (6): 41-47    DOI: 10.13523/j.cb.20190606
研究报告     
MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *
巩凤芹1,2,刘启顺2,谭海东2,金花3,谭成玉1,**(),尹恒2,**()
1 大连海洋大学海洋科技与环境学院 大连 116023
2 中国科学院大连化学物理研究所天然产物与糖工程组 大连 116023
3 宁波大学材料科学与化学工程学院 宁波 315211
Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis
Feng-qin GONG1,2,Qi-shun LIU2,Hai-dong TAN2,hua JIN3,Cheng-yu TAN1,**(),Heng YIN2,**()
1 College of Marine Science and Environment, Dalian Ocean University, Dalian 116023, China
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian 116023, China
3 College of Material and Engineering, Ningbo University, Ningbo 315211, China
 全文: PDF(1034 KB)   HTML
摘要:

固定化酶作为一种绿色高效的生物催化剂,其性能远超游离酶。目前酶的固定化技术适用范围仍然较小,酶的研究范围多停留在模型酶阶段,扩大固定化酶的研究范围具有十分重要的意义。金属有机骨架材料(MOFs)作为酶固定化的载体在近些年得到了广泛的探索,但是具有生物功能的酶-MOFs复合材料的许多特性仍有待挖掘。采用仿生矿化的合成方法将5-羟甲基糠醛氧化酶(HMFO)固定到以沸石咪唑酯(ZIF-8)为代表的MOFs材料中,制备得到一种新的生物催化剂HMFO@ZIF-8,扫描电子显微镜表征其形态区别于经典的菱形十二面体。采用考马斯亮蓝法测定蛋白质浓度,计算得到酶的固定化效率达到89.0%。HMFO@ZIF-8催化5-羟甲基糠醛的转化率达到84.3%,收率和选择性均高于游离酶。拓展了MOFs固定化酶的研究范围,为研究其他生物大分子复合材料的生物催化剂提供一定的借鉴意义。

关键词: 金属有机骨架材料5-羟甲基糠醛氧化酶固定化酶生物催化剂    
Abstract:

Immobilized enzymes are biocatalysts that typically have higher functional efficiency and reproducibility than free enzymes. However, the use of enzyme immobilization is still limited, and the research is mainly conducted within model enzymes. In recent years, the study of metal organic frameworks (MOFs) as enzyme immobilization carriers has attracted great attention, and the nature of MOF-enzyme complexes remains to be elucidated. In the present study, a novel immobilized biocatalyst was prepared by embedding a 5-hydroxymethylfurfural oxidase (HMFO) in zeolite imidazole ester skeleton ZIF-8(a typical MOF) through biomimetic mineralization. The morphology of the composite catalyst under scanning electron microscope was different from the classical rhombohedral dodecahedron of MOF immobilized enzyme. Protein concentration assay conducted by Commassie brilliant blue G-250 method indicated that the immobilization efficiency was reached 89.0%. Moreover, the conversion efficiency of HMFO@ZIF-8 to 5-hydroxymethylfurfural reached 84.3%, and the yield and selectivity were significantly improved as compared to free HMFO.New knowledge for the research of MOFs immobilized enzymes and facilitates the development of immobilized biomacromolecules and synthetic biocatalysts were provided.

Key words: MOFs    5-Hydroxymethylfurfural oxidase    Immobilized enzyme    Biocatalyst
收稿日期: 2018-10-30 出版日期: 2019-07-12
ZTFLH:  Q814  
基金资助: * 国家自然科学基金(31670803);大连化物所创新基金资助项目(DICP ZZBS201704);大连化物所创新基金资助项目(DICP BioChE-X201801)
通讯作者: 谭成玉,尹恒     E-mail: tanchyu@dlou.edu.cn;yinheng@dicp.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
巩凤芹
刘启顺
谭海东
金花
谭成玉
尹恒

引用本文:

巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.

Feng-qin GONG,Qi-shun LIU,Hai-dong TAN,hua JIN,Cheng-yu TAN,Heng YIN. Immobilization of 5-Hydroxymethylfurfural Oxidase within MOFs for Catalysis. China Biotechnology, 2019, 39(6): 41-47.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190606        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I6/41

图1  HMFO@ZIF-8的负载量
图2  HMFO和HMFO@ZIF-8的SDS-PAGE分析图
图3  FITC-HMFO@ZIF-8激光共聚焦显微镜图
图4  HMFO@ZIF-8(a)、BSA@ZIF-8(b)的扫描电镜图
图5  不同浓度的2-甲基咪唑对HMFO酶活的影响
图6  不同浓度的乙酸锌对HMFO酶活的影响
图7  HMFO和HMFO@ZIF-8催化HMF后的色谱图
图8  HMF、DFF、FFA的标准曲线
Enzyme Time(h) HMF conversion (%) DFF yield (%) FFA yield (%)
A 85.0 84.3 64.1 17.7
B 85.0 33.8 32.3 1.5
C 85.0 100.0 0.0 71.7
表1  HMFO@ZIF-8催化HMF的转化率
[1] Stepankova V, Bidmanova S, Koudelakova T , et al. Strategies for stabilization of enzymes in organic solvents. ACS Catalysis, 2013,3(12):2823-2836.
doi: 10.1021/cs400684x
[2] Cantone S, Ferrario V, Corici L , et al. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev, 2013,42(15):6262-6276.
doi: 10.1039/c3cs35464d
[3] Ke C, Fan Y, Su F , et al. Recent advances in enzyme immobilization. Chinese Journal of Biotechnology, 2018,34(2):188-203.
[4] Majewski M B, Howarth A J, Li P , et al. Enzyme encapsulation in metal-organic frameworks for applications in catalysis. Crystengcomm, 2017,19(29):4082-4091.
doi: 10.1039/C7CE00022G
[5] 李梦腊, 毛洪丽, 黄志强 . 智能固定化酶载体的研究进展. 工业微生物, 2018,48(3):46-54.
Li M L, Mao H L, Huang Z Q , et al. Research progress of intelligent immobilized enzyme carriers. Industrial Microbiology, 2018,48(3):46-54.
[6] Kahn J S, Freage L, Enkin N , et al. Stimuli-responsive DNA-functionalized metal-organic frameworks (MOFs). Adv Mater, 2017,29(6):1602782.
doi: 10.1002/adma.201602782
[7] Zhuang J, Kuo C H, Chou L Y , et al. Optimized metal-organic-framework nanospheres for drug delivery evaluation of small molecule encapsulation. ACSNano, 2014,8(3):2812-2819.
[8] Patricia H, Ruxandra G, Tarek B . Metal-organic frameworks in biomedicine. Chem Rev, 2012,112(2):1232-1268.
doi: 10.1021/cr200256v
[9] Meek S T, Greathouse J A, Allendorf M D . Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater, 2011,23(2):249-267.
doi: 10.1002/adma.201002854
[10] Wang X, Makal T A, Zhou H C . Protein immobilization in metal-organic frameworks by covalent binding. Australian Journal of Chemistry, 2014,67(11):1629-1631.
doi: 10.1071/CH14104
[11] Vranish J N, Ancona M G, Oh E , et al. Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle. Nanoscale, 2017,9(16):5172-5187.
doi: 10.1039/C7NR00200A
[12] 田运奇, 吴小芳, 侯文颖 . 辣根过氧化物酶在MOF上的固定化研究. 辽宁师范大学学报(自然科学版), 2016,39(3):373-376.
Tian Y Q, Wu X F, Hou W Y , et al. Immobilization of horseradish peroxidase on the metal-organic framework. Journal of Liaoning Normal University, 2016,39(3):373-376.
[13] Wu X, Yang C, Ge J . Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresources and Bioprocessing, 2017,4(1):24.
doi: 10.1186/s40643-017-0154-8
[14] Jin H, Li Y, Liu X , et al. Recovery of HMF from aqueous solution by zeolitic imidazolate frameworks. Chemical Engineering Science, 2015,124:170-178.
doi: 10.1016/j.ces.2014.07.017
[15] Dijkman W P, Fraaije M W . Discovery and characterization of a 5-hydroxymethylfurfural oxidase from Methylovorus sp. strain MP688. Applied and Environmental Microbiology, 2014,80(3):1082-1090.
doi: 10.1128/AEM.03740-13
[16] 陈英波, 赵林飞, 彪王 . 沸石咪唑骨架材料(ZIF-8)的结构生长过程. 天津工业大学学报, 2016,35(5):1-4.
Chen Y B, Zhao L F, Wang B , et al. Structural evolution of zeolitic imidazolate framework-8 (ZIF-8). Journal of Tianjin Polytechnic University, 2016,35(5):1-4.
[17] Dijkman W P, Binda C, Fraaije M W , et al. Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase. ACS Catalysis, 2015,5(3):1833-1839.
doi: 10.1021/acscatal.5b00031
[18] 邢丹, 马铭鸿, 吴航伸 . CotA漆酶的固定化及其对溴麝香草酚蓝脱色的效果. 东北林业大学学报, 2017,45(10):40-43,48.
Xing D, Ma M H, Wu H S , et al. Immobilization of CotA laccase and decoloring bromothymol blue. Journal of Northeast Forestry University, 2017,45(10):40-43,48.
[19] Cherian E, Dharmendirakumar M, Baskar G . Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chinese Journal of Catalysis, 2015,36(8):1223-1229.
doi: 10.1016/S1872-2067(15)60906-8
[20] Liang K, Ricco R, Doherty C M , et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications, 2015,6:7240.
[21] Hu Y, Dai L, Liu D , et al. Progress & prospect of metal-organic frameworks (MOFs) for enzyme immobilization (enzyme/MOFs). Renewable and Sustainable Energy Reviews, 2018,91:793-801.
doi: 10.1016/j.rser.2018.04.103
[22] Chheda J N, Huber G W, Dumesic J A . Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed Engl, 2007,46(38):7164-7183.
doi: 10.1002/(ISSN)1521-3773
[23] 王军, 张春鹏, 欧阳平凯 . 5-羟甲基糠醛制备及应用的研究进展. 化工进展, 2008,27(5):702-707.
Wang J, Zhang C P, Ou yang P K . Advances in production and application of 5-hydroxymethyl furfural. Chemical Industry and Engineering Progress, 2008,27(5):702-707.
[24] 郑路凡, 杜泽学, 宗保宁 . 催化合成典型5-羟甲基糠醛衍生物的研究进展. 化工进展, 2015,34(6):1511-1518.
doi: 10.16085/j.issn.1000-6613.2015.06.002
Zheng L F, Du Z X, Zong B N . Progress of catalytic synthesis of typical 5-hydroxymethyl furfural derivatives. Chemical Industry & Engineering Progress, 2015,34(6):1511-1518.
doi: 10.16085/j.issn.1000-6613.2015.06.002
[25] Dijkma W P, Groothuis D E, Fraaije M W . Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid. Angew Chem Int Ed Engl, 2014,53(25):6515-6518.
doi: 10.1002/anie.201402904
[1] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[2] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[3] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[4] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[5] 徐珊,李任强,张继福,张云,孙爱君,胡云峰. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶 *[J]. 中国生物工程杂志, 2017, 37(12): 77-83.
[6] 司洪宇, 王丙莲, 梁晓辉, 张晓东. 酶电极法快速测定甘油含量的研究[J]. 中国生物工程杂志, 2016, 36(12): 79-85.
[7] 李丽娟, 马贵平, 赵林果. 固定化酶载体研究进展[J]. 中国生物工程杂志, 2015, 35(11): 105-113.
[8] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[9] 黄哲,张涛,林章凛. 纳米SiO2固定化β-葡萄糖苷酶及其在双相体系中水解大豆异黄酮的工艺研究[J]. 中国生物工程杂志, 2008, 28(6): 71-76.
[10] 汤亚杰,李艳,徐小玲,李冬生. 天然活性先导化合物生物转化研究进展[J]. 中国生物工程杂志, 2007, 27(9): 110-115.
[11] 金科铭,曹学君,庄英萍,储炬,张嗣良. 固定化青霉素酰化酶在光-pH敏感可回用两水相中裂解青霉素G为6-APA[J]. 中国生物工程杂志, 2007, 27(10): 53-58.
[12] 孔珊珊,马明浩,汪洋,陈怡倩,潘延芳,吴自荣. 交联酶聚集体及其研究进展[J]. 中国生物工程杂志, 2006, 26(0): 0-0.
[13] 曹黎明, 陈欢林. 酶的定向固定化方法及其对酶生物活性的影响[J]. 中国生物工程杂志, 2003, 23(1): 22-29.
[14] 孟广震. 迎接生物技术的第三个浪潮[J]. 中国生物工程杂志, 2002, 22(4): 1-5.
[15] 杜晨宇, 李春, 曹竹安, 郑玉果. 工业生物技术的核心——生物催化[J]. 中国生物工程杂志, 2002, 22(1): 9-14.