Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (6): 62-72    DOI: 10.13523/j.cb.20190609
研究报告     
高分子囊泡在药物释放体系的应用 *
曹文杰1,熊向源1,2,**(),龚妍春2,李资玲2,李玉萍2
1 江西科技师范大学药学院 南昌 330013
2 江西科技师范大学生命科学学院 南昌 330013
The Application of Polymersomes in Drug Delivery System
Wen-jie CAO1,Xiang-yuan XIONG1,2,**(),Yan-chun GONG2,Zi-ling LI2,Yu-ping LI2
1 School of Pharmacy, Jiangxi Normal University of Science and Technology, Nanchang 330013,China
2 School of Life Sciences,Jiangxi Normal University of Science and Technology,Nanchang 330013,China
 全文: PDF(1784 KB)   HTML
摘要:

高分子囊泡作为一种新型的纳米药物载体,具有生物可降解性、稳定性、生物相容性及可修饰的多功能化等特点。改变聚合物种类和亲水-疏水嵌段的比例,可以制备具有不同形态和膜特性的高分子囊泡。经过修饰后的高分子囊泡,可赋予其更多的功能,从而实现药物的控释和药物靶向的能力。对高分子囊泡的结构、组成和制备方法以及在药物释放体系的应用等方面进行了较为详细的综述,目的是了解高分子囊泡最新研究进展以及未来科学家们亟须解决的重要问题。

关键词: 高分子囊泡药物释放体系两亲性嵌段共聚物控释靶向    
Abstract:

As a novel kind of nano-drug carrier, the polymersomes have the characteristics of biodegradability, stability, biocompatibility and modifiable multi-functionalization and so on. Polymersomes can be prepared by changing polymer type and the ratio of hydrophilic - hydrophobic block, which possess different morphological and membrane properties. After modifiing polymersomes, more functions can be given to realize the ability of controlling drug release and targeting drugs. The structure, composition, preparation methods and the application of drug delivery system about polymersomes have been reviewed in detail. The purpose is to know the latest research progress of polymersomes and some important problems in this field need to be solved by scientists in the future.

Key words: Polymersomes    Drug delivery system    Amphiphilic block copolymer    Controlled release    Target
收稿日期: 2018-11-13 出版日期: 2019-07-12
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(21664007);江西省主要学科学术和技术带头人培养计划(20153BCB22009);江西省高等学校科技落地计划资助项目(KJLD13071)
通讯作者: 熊向源     E-mail: xyxiong@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹文杰
熊向源
龚妍春
李资玲
李玉萍

引用本文:

曹文杰,熊向源,龚妍春,李资玲,李玉萍. 高分子囊泡在药物释放体系的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 62-72.

Wen-jie CAO,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. The Application of Polymersomes in Drug Delivery System. China Biotechnology, 2019, 39(6): 62-72.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190609        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I6/62

图1  脂质体(左)与高分子囊泡(右)的示意图[24]
图2  高分子囊泡的三维横截面示意图 [5]
图3  五嵌段共聚物分子式和微观结构及其透射电镜图[45]
图4  pH触发高分子囊泡的转化[47]
图5  癌细胞组织中纳米载体的形态转换和温度响应[65]
图6  包埋有亲水或疏水药物表面功能化的靶向高分子囊泡[4]
Block numbers Polymersomes Function Loaded-cargoes Formation
Diblock mPEG-PLGA Normal Dox; Tax Nanoemulsion[63]
FA-PEG-PCL Targeted DOX; PTX Thin-film hydration[34]
PTMA-PGA Smart DOX; γ-Fe2O3 Nanoprecipitation[48]
PDP-TEG Smart DOX; CRT Nanoprecipitation[65]
PDMAEM-mPEG Normal pDNA Nanoprecipitation[36]
PS-β-CD/PEO-Fc Smart Rhodamine B Not reported[66]
PEG45-b-P(Asp-co-AspGA);
PEG114-b-P(Asp-co-AspPBA)
Smart Vancomycin Nanoprecipitation[67]
Triblock PLA-PEG-PLA Normal Atorvastatin; Lisinopril Nanoemulsion[40]
PAE-g-PCL-PEG Smart DOX·HCl Nanoprecipitation[47]
Block numbers Polymersomes Function Loaded-cargoes Formation
PBAE-PEG-PLA Smart Nile red Nanoprecipitation[69]
PEG-PAA(SH)-PDEA Normal BSA; Cc Nanoprecipitation[64]
PEO-b-P(DEA-stat-TMA) Smart DOX·HCl Nanoprecipitation[68]
Acupa-PEG-PTMBPEC-PSAC Targeted granzyme B Nanoprecipitation[38]
Poly[(HEMA-DTDPA)-mPEG Smart Cal Thin-film hydration[35]
Pentablock PLA-PEO-PPO-PEO-PLA Normal Insulin Nanoprecipitation[45]
表1  高分子囊泡在药物释放体系中的应用
[1] Zhu Y, Yang B, Chen S , et al. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Progress in Polymer Science, 2017,64:1-22.
doi: 10.1016/j.progpolymsci.2015.05.001
[2] Palivan C G, Goers R, Najer A , et al. Bioinspired polymer vesicles and membranes for biological and medical applications. Chemical Society Reviews, 2016,45(2):377-411.
doi: 10.1039/C5CS00569H
[3] Che H, van Hest J C M . Stimuli-responsive polymersomes and nanoreactors. Journal of Materials Chemistry B, 2016,4(27):4632-4647.
doi: 10.1039/C6TB01163B
[4] Krishnamoorthy B, Karanam V, Chellan V R , et al. Polymersomes as an effective drug delivery system for glioma--a review. Journal of Drug Targeting, 2014,22(6):469-477.
doi: 10.3109/1061186X.2014.916712
[5] Lee J S, Feijen J . Polymersomes for drug delivery: design, formation and characterization. Journal of Control Release, 2012,161(2):473-483.
doi: 10.1016/j.jconrel.2011.10.005
[6] Martin C, Aibani N, Callan J F , et al. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs. Therapeutic Delivery, 2016,7(1):15-31.
doi: 10.4155/tde.15.84
[7] Muller L K, Landfester K . Natural liposomes and synthetic polymeric structures for biomedical applications. Biochemical and Biophysical Research Communications, 2015,468(3):411-418.
doi: 10.1016/j.bbrc.2015.08.088
[8] Massignani M, Lomas H, Battaglia G . Polymersomes: A synthetic biological approach to encapsulation and delivery. Advances in Polymer Science, 2010,229:115-154.
doi: 10.1007/978-3-642-12873-8
[9] Gerasimov O V, Marquita J A B, Qualls M M , et al. Cytosolic drug delivery using pH- and light-sensitive liposomes. Advanced Drug Delivery Review, 1999,38(3):317-338.
doi: 10.1016/S0169-409X(99)00035-6
[10] Allen T M, Cullis P R . Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 2013,65(1):36-48.
doi: 10.1016/j.addr.2012.09.037
[11] Peer D, Karp J M, Hong S . Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007,2(12):751-760.
[12] Kim Y J, Kim B, Hyun D C . Photocrosslinkable poly(ε-caprolactone)-b-hyperbranched polyglycerol (PCL b-hbPG) with improved biocompatibility and stability for drug delivery. Macromolecular Chemistry and Physics, 2015,216(11):1161-1170.
doi: 10.1002/macp.v216.11
[13] Alibolandi M, Ramezani M, Abnous K , et al. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs. Journal of Nanoparticle Research, 2015,17(2):76-92.
doi: 10.1007/s11051-015-2878-8
[14] Pippa N, Merkouraki M, Pispas S , et al. DPPC:MPOx chimeric advanced drug delivery nano systems (chiaDDnSs): physicochemical and structural characterization, stability and drug release studies. Internationa Journal of Pharmaceutics, 2013,450(1-2):1-10.
doi: 10.1016/j.ijpharm.2013.03.052
[15] Bermudez H, Brannan A K, Hammer D A , et al. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules, 2002,35(21):8203-8208.
doi: 10.1021/ma020669l
[16] Qin J, Liu Q, Zhang J , et al. Rationally separating the corona and membrane functions of polymer vesicles for enhanced T(2) MRI and drug delivery. ACS Applied MaterialsInterfaces, 2015,7(25):14043-14052.
doi: 10.1021/acsami.5b03222
[17] Wuytens P, Parakhonskiy B, Yashchenok A , et al. Pharmacological aspects of release from microcapsules from polymeric multilayers to lipid membranes. Current Opinion in Pharmacology, 2014,18:129-140.
doi: 10.1016/j.coph.2014.09.016
[18] Craciun I, Belluati A, Cornelia G , et al. Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers. Nanomedicine, 2017,12(7):811-817.
doi: 10.2217/nnm-2016-0413
[19] Yewle J, Wattamwar P, Tao Z , et al. Progressive saturation improves the encapsulation of functional proteins in nanoscale polymer vesicles. Pharmaceutical Research, 2016,33(3):573-589.
doi: 10.1007/s11095-015-1809-9
[20] Iyisan B, Kluge J, Formanek P , et al. Multifunctional and dual-responsive polymersomes as robust nanocontainers: design, formation by sequential post-conjugations, and pH-controlled drug release. Chemistry of Materials, 2016,28(5):1513-1525.
doi: 10.1021/acs.chemmater.5b05016
[21] Nahire R, Haldar M K, Paul S , et al. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials, 2014,35(24):6482-6497.
doi: 10.1016/j.biomaterials.2014.04.026
[22] Chiang W H, Huang W C, Chang C W , et al. Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging. Journal of Control Release, 2013,168(3):280-288.
doi: 10.1016/j.jconrel.2013.03.029
[23] Du J, O’Reilly R K . Advances and challenges in smart and functional polymer vesicles. Soft Matter, 2009,5(19):3544-3561.
doi: 10.1039/b905635a
[24] Messager L, Gaitzsch J, Chierico L , et al. Novel aspects of encapsulation and delivery using polymersomes. Current Opinion in Pharmacology, 2014,18:104-111.
doi: 10.1016/j.coph.2014.09.017
[25] Zhang L F, Eisenberg A . Multiple morphologiesof“crew-cut” aggregates of polystyrene-b-poly(acrylicacid) block copolymers. Science, 1995,268(5218):1728-1731.
doi: 10.1126/science.268.5218.1728
[26] Kui Y, Eisenberg A . Multiple morphologies in aqueous solutions of aggregates of polystyrene-block poly(ethylene oxide) diblock copolymers. Macromolecules, 1996,29(19):6359-6361.
doi: 10.1021/ma960381u
[27] Zhang L F, Eisenberg L . Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society, 1996,118(13):3168-3181.
doi: 10.1021/ja953709s
[28] Zhang L F, Bartels C, Yu Y S , et al. Mesosized crystal-like structure of hexagonally packed hollow hoops by solution self-assembly of diblock copolymers. Physical Review Letters, 1997,79(25):5034-5037.
doi: 10.1103/PhysRevLett.79.5034
[29] Yu Y S, Zhang L F, Eisenberg L . Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules, 1998,31(4):1144-1154.
doi: 10.1021/ma971254g
[30] Shen H W, Eisenberg A . Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules, 2000,33(7):2561-2572.
doi: 10.1021/ma991161u
[31] Discher D E, Eisenberg A . Polymer vesicles. Science, 2002,297(5583):967-73.
doi: 10.1126/science.1074972
[32] Li S L, Byme B, Welsh J E, Palmer A F . Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnology Progress, 2007,23(1):278-285.
doi: 10.1002/btpr.v22:6
[33] Mai Y, Eisenberg A . Self-assembly of block copolymers. Chemical Society Reviews, 2012,41(18):5969-5985.
doi: 10.1039/c2cs35115c
[34] Zhu D, Wu S, Hu C , et al. Folate-targeted polymersomes loaded with both paclitaxel and doxorubicin for the combination chemotherapy of hepatocellular carcinoma. Acta Biomaterialia, 2017,58:399-412.
doi: 10.1016/j.actbio.2017.06.017
[35] Laskar P, Dey J. Ghosh S K , Spontaneously formed redox- and pH-sensitive polymersomes by mPEG based cytocompatible random copolymers. Journal of Colloid Interface Science, 2017,501:122-133.
[36] Laskar P, Dey J, Banik P , et al. In vitro drug and gene delivery using random cationic copolymers forming stable and pH-sensitive polymersomes. Macromolecular Bioscience, 2017,17(4):1-14.
[37] Sanchez-Purra M, Ramos V, Petrenko V A , et al. Double-targeted polymersomes and liposomes for multiple barrier crossing. International Journal of Pharmaceutics, 2016,511(2):946-956.
doi: 10.1016/j.ijpharm.2016.08.001
[38] Li X, Yang W, Zou Y , et al. Efficacious delivery of protein drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes. Journal of Control Release, 2015,220:704-714.
doi: 10.1016/j.jconrel.2015.08.058
[39] Meng F H, Zhong Y N, Cheng R , et al. pH-sensitive polymeric nanoparticles for tumor-targeting Doxoubicin delivery: concept and recent advances. Nanomedicine, 2014,9(3):487-499.
doi: 10.2217/nnm.13.212
[40] Danafar H, Rostamizadeh K, Davaran S , et al. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril. Drug Development and Industrial Pharmacy, 2014,40(10):1411-1420.
doi: 10.3109/03639045.2013.828223
[41] Chen C Y, Wang H L . Dual thermo- and pH-responsive zwitterionic sulfobataine copolymers for oral delivery system. Macromolecular Rapid Communications, 2014,35(17):1534-1540.
doi: 10.1002/marc.v35.17
[42] Li G, Guo L, Wen Q , et al. Thermo- and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release. International Journal of Biological Macromolecules, 2013,55:69-74.
doi: 10.1016/j.ijbiomac.2012.12.048
[43] He C, Zhuang X, Tang Z , et al. Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Advanced Healthcare Materials, 2012,1(1):48-78.
doi: 10.1002/adhm.201100008
[44] Wang Y, Gao S, Ye W H , et al. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self assembled from a biodegradable copolymer. Nature Materials, 2006,5(10):791-796.
[45] Xiong X Y, Li Q H, Li Y P , et al. Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery. Colloids and Surfaces B: Biointerfaces, 2013,111:282-288.
doi: 10.1016/j.colsurfb.2013.06.019
[46] Chu B, Zhang L, Qu Y , et al. Synthesis, characterization and drug loading property of monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(D,L-lactide) (MPEG-PCLA) copolymers. Scientific Reports, 2016,6:34069.
doi: 10.1038/srep34069
[47] Kang S W, Li Y, Park J H , et al. pH-triggered unimer/vesicle-transformable and biodegradable polymersomes based on PEG-b-PCL-grafted poly(β-amino ester) for anti-cancer drug delivery. Polymer, 2013,54(1):102-110.
doi: 10.1016/j.polymer.2012.10.055
[48] Oliveira H, Perez-Andres E, Thevenot J , et al. Magnetic field triggered drug release from polymersomes for cancer therapeutics. Journal of Control Release, 2013,169(3):165-170.
doi: 10.1016/j.jconrel.2013.01.013
[49] Car A, Baumann P, Duskey J T , et al. pH-responsive PDMS-b-PDMAEMA micelles for intracellular anticancer drug delivery. Biomacromolecules, 2014,15(9):3235-3245.
doi: 10.1021/bm500919z
[50] Photos P J, Bacakova L, Discher B , et al. Polymer vesicles in vivo: correlations with PEG molecular weight. Journal of Controlled Release, 2003,90(3):323-334.
doi: 10.1016/S0168-3659(03)00201-3
[51] Lin T, Fang Q, Peng D , et al. PEGylated non-ionic surfactant vesicles as drug delivery systems for gambogenic acid. Drug Delivery, 2013,20(7):277-284.
doi: 10.3109/10717544.2013.836618
[52] Yassin M A, Appelhans D, Wiedemuth R , et al. Overcoming concealment effects of targeting moieties in the PEG corona: controlled permeable polymersomes decorated with folate-antennae for selective targeting of tumor cells. Small, 2015,11(13):1580-1591.
doi: 10.1002/smll.v11.13
[53] Liu F T, Eisenberg A . Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block polystyrene-block-poly(4-vinyl pyridine). Journal of the American Chemical Society, 2003,125(49):15059-15064.
doi: 10.1021/ja038142r
[54] Bollhorst T, Rezwan K, Maas M . Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chemical Society Reviews, 2017,46(8):2091-2126.
doi: 10.1039/C6CS00632A
[55] Thambi T, Park J H, Lee D S . Stimuli-responsive polymersomes for cancer therapy. Biomaterial Science, 2016,4(1):55-69.
doi: 10.1039/C5BM00268K
[56] Brinkhuis R P, Rutjes F P J T, van Hest J C M . Polymeric vesicles in biomedical applications. Polymer Chemistry, 2011,2(7):1449-1462.
doi: 10.1039/c1py00061f
[57] Gref R, Lu M, Quellec P , et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces, 2000,18(3-4):301-313.
doi: 10.1016/S0927-7765(99)00156-3
[58] Kim P, Kim D H, Kim B , et al. Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion. Nanotechnology, 2005,16(10):2420-2426.
doi: 10.1088/0957-4484/16/10/072
[59] Jia L, Cui D, Bignon J , et al. Reduction-responsive cholesterol-based block copolymer vesicles for drug delivery. Biomacromolecules, 2014,15(6):2206-2217.
doi: 10.1021/bm5003569
[60] Kumar A, Lale S V, Aji Alex M R , et al. Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy: In vitro and in vivo studies. Colloids Surf B Biointerfaces, 2017,149:369-378.
doi: 10.1016/j.colsurfb.2016.10.044
[61] Liu Q, Song L, Chen S , et al. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials, 2017,11:423-433.
[62] Zhu J, Xu X, Hu M , et al. Co-encapsulation of combretastatin-A4 phosphate and doxorubicin in polymersomes for synergistic therapy of nasopharyngeal epidermal carcinoma. Journal of Biomedical Nanotechnology, 2015,11(6):997-1006.
doi: 10.1166/jbn.2015.2010
[63] Wang H, Zhao Y, Wu Y , et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials, 2011,32(32):8281-8290.
doi: 10.1016/j.biomaterials.2011.07.032
[64] Sun H, Meng F, Cheng R , et al. Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomaterials, 2014,10(5):2159-2168.
doi: 10.1016/j.actbio.2014.01.010
[65] Kashyap S, Jayakannan M . Thermo-responsive and shape transformable amphiphilic scaffolds for loading and delivering anticancer drugs. Journal of Materials Chemistry B, 2014,2(26):4142-4152.
doi: 10.1039/c4tb00134f
[66] Yan Q, Yuan J Y, Cai Z N , et al. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. Journal of the American Chemical Society, 2010,132(27):9268-9270.
doi: 10.1021/ja1027502
[67] Yang H, Zhang C, Li C , et al. Glucose-responsive polymer vesicles templated by alpha-CD/PEG inclusion complex. Biomacromolecules, 2015,16(4):1372-1381.
doi: 10.1021/acs.biomac.5b00155
[68] Chen W, Du J . Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Scientific Report, 2013,3:2162.
[69] Lee J S, Deng X, Han P , et al. Dual stimuli-responsive poly(beta-amino ester) nanoparticles for on demand burst release. Macromolecular Bioscience, 2015,15(9):1314-1322.
doi: 10.1002/mabi.201500111
[70] Nguyen D H, Lee J S, Bae J W , et al. Targeted doxorubicin nanotherapy strongly suppressing growth of multidrug resistant tumor in mice. International Journal of Pharmaceutics, 2015,495(1):329-335.
doi: 10.1016/j.ijpharm.2015.08.083
[71] Xiong X Y, Tao L, Qin X , et al. Novel folated Pluronic/poly(lactic acid) nanoparticles for targeted delivery of paclitaxel. RSC Advances, 2016,6(58):52729-52738.
doi: 10.1039/C6RA09271C
[72] Xiong X Y, Guo L, Gong Y C , et al. In vitro & in vivo targeting behaviors of biotinylated Pluronic F127/poly(lactic acid) nanoparticles through biotin-avidin interaction. European Journal of Pharmaceutical Sciences, 2012,46(5):537-544.
doi: 10.1016/j.ejps.2012.04.011
[73] Webster D M, Sundaram P, Byrne M E . Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 2013,84(1):1-20.
doi: 10.1016/j.ejpb.2012.12.009
[74] Yu G, Yu W, Shao L , et al. Fabrication of a targeted drug delivery system from a pillar[5]arene-based supramolecular diblock copolymeric amphiphile for effective cancer therapy. Advanced Functional Materials, 2016,26(48):8999-9008.
doi: 10.1002/adfm.v26.48
[75] Alibolandi M, Alabdollah F, Sadeghi F , et al. Dextran-b-poly(lactide-co-glycolide) polymersome for oral delivery of insulin: In vitro and in vivo evaluation. Journal of Control Release, 2016,227:58-70.
doi: 10.1016/j.jconrel.2016.02.031
[76] Yang J, Hou Y, Ji G , et al. Targeted delivery of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats. European Journal of Pharmaceutical Sciences, 2014,52:180-190.
doi: 10.1016/j.ejps.2013.11.017
[1] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[2] 胡胜涛,张二兵,林也,张逢,黄丹,宋厚盼,刘斌,蔡雄. 经皮给药纳米载体及靶向系统治疗类风湿关节炎研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 98-106.
[3] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[4] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[5] 肖雪筠,唐奇,新华·那比. 靶向肿瘤微环境的CAR-T治疗研究*[J]. 中国生物工程杂志, 2020, 40(12): 67-74.
[6] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[7] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[8] 明金玉, 李化丹, 梁士博, 何莉, 于青含, 李集临, 张延明. 植物功能性靶向基因标记的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 83-91.
[9] 周忠厅, 张权, 王胜涛, 蔡颖, 中西秀树, 尹健. 共价连接BODIPY光敏剂的聚合物纳米胶束及其靶向光动力疗效的研究[J]. 中国生物工程杂志, 2017, 37(10): 33-41.
[10] 秦海霞, 崔红凯, 潘莹, 户瑞丽, 朱利红, 王世进. miR-335靶向Rho相关卷曲螺旋形成蛋白激酶1对卵巢癌细胞增殖的影响[J]. 中国生物工程杂志, 2016, 36(6): 24-31.
[11] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[12] 何敏瑜, 冉海涛. 核酸适配体结合纳米材料用于肿瘤靶向治疗[J]. 中国生物工程杂志, 2015, 35(4): 86-91.
[13] 唐德平, 毛爱红, 王芳, 张虹, 王黎, 廖世奇. 适配体介导脂质体靶向递送siRNA的研究[J]. 中国生物工程杂志, 2015, 35(1): 54-60.
[14] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[15] 庄军, 吴祖建. TAL效应子介导基因组DNA的靶向修饰[J]. 中国生物工程杂志, 2014, 34(8): 74-80.