Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (6): 84-90    DOI: 10.13523/j.cb.20190612
研究报告     
细胞自噬对中性粒细胞功能调节的研究进展 *
杨晓燕,毛景东,李树森,张新颖,杜立银()
内蒙古民族大学动物科学技术学院 通辽 028000
Advances in Autophagy on the Regulation of Neutrophil Function
Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU()
College of Animal Science and Technology,Inner Mongolia University for Nationalities,Tongliao 028000,China
 全文: PDF(436 KB)   HTML
摘要:

细胞自噬是一种进化上高度保守的胞内降解系统,旨在实现维持细胞稳态以应对不同的细胞应激。在生理状态下,细胞自噬水平通常较低;而在氧化应激、营养饥饿和各种病原体刺激下会显著上调。过去的许多研究都表明细胞自噬在多种组织细胞和生理功能调控中有重要意义。早期研究发现了细胞自噬和中性粒细胞死亡之间的联系,这是与炎症密切关联的必要过程。在人类系统和小鼠模型中表明,细胞自噬在中性粒细胞驱动的炎症和防御病原体方面起着至关重要的作用。细胞自噬对中性粒细胞主要功能的发挥至关重要,包括脱颗粒、活性氧产生和中性粒细胞胞外诱捕网的释放。细胞自噬对中性粒细胞分化以及主要功能(包括脱颗粒、活性氧产生和中性粒细胞胞外诱捕网的释放)的发挥至关重要。集中讨论了细胞自噬对中性粒细胞的作用,即从中性粒细胞在骨髓中产生到炎症反应和NETosis细胞死亡。

关键词: 自噬中性粒细胞粒细胞生成吞噬脱颗粒中性粒细胞胞外诱捕网    
Abstract:

Autophagy is an evolutionarily highly conserved intracellular degradation system designed to maintain cellular homeostasis in response to cellular stress. In physiological states, the level of autophagy is usually low; however, it is significantly upregulated under oxidative stress, nutritional starvation, and various pathogens. Many studies in the past have shown that autophagy plays an important role in the regulation of various histiocytes and physiological functions. Early studies have found a link between autophagy and neutrophil death, a necessary process closely related to inflammation. Autophagy plays a crucial role in neutrophil-driven inflammation and defense against pathogens in human and mouse models. Autophagy is essential for neutrophil differentiation and major functions, including degranulation, reactive oxygen species production, and release of neutrophil extracellular trapping nets. The role of autophagy in neutrophils, from neutrophils to inflammatory responses and NETosis cell death in the bone marrow were focused.

Key words: Autophagy    Neutrophils    Granulocyte production    Phagocytosis    Degranulation    Neutrophil extracellular trapping network
收稿日期: 2018-10-15 出版日期: 2019-07-12
ZTFLH:  Q813  
基金资助: * 国家自然科学基金(31260626);国家自然科学基金(31760752);内蒙古自治区肉牛疾病防控工程技术研究中心开放课题(MDK2017021);内蒙古自治区自然科学基金资助项目(2018LH03009)
通讯作者: 杜立银     E-mail: dly2000@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨晓燕
毛景东
李树森
张新颖
杜立银

引用本文:

杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.

Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function. China Biotechnology, 2019, 39(6): 84-90.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190612        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I6/84

[1] Sil P, Muse G, Martinez J . A ravenous defense: canonical and non-canonical autophagy in immunity. Curr Opin Immunol, 2018,50:21-31.
doi: 10.1016/j.coi.2017.10.004
[2] Galluzzi L, Vitale I, Aaronson S A , et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ, 2018,25(3):486-541.
[3] Martinez J, Cunha L D, Park S , et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature, 2016,533(7601):115-119.
[4] Mayadas T N, Cullere X, Lowell C A . The multifaceted functions of neutrophils. Annu Rev Pathol, 2014,9:181-218.
doi: 10.1146/annurev-pathol-020712-164023
[5] Cowland J B, Borregaard N . Granulopoiesis and granules of human neutrophils. Immunol Rev, 2016,273(1):11-28.
doi: 10.1111/imr.2016.273.issue-1
[6] Manz M G, Boettcher S . Emergency granulopoiesis. Nat Rev Immunol, 2014,14(5):302-314.
doi: 10.1038/nri3660
[7] Tamassia N, Bianchetto-Aguilera F, Arruda-Silva F , et al. Cytokine production by human neutrophils: revisiting the “dark side of the moon. ” Eur J Clin Invest, 2018: 48(suppl2):e12952.
doi: 10.1111/eci.12952
[8] Jablonska J, Granot Z . Neutrophil, quo vadis. J Leukoc Biol, 2017,102(3):685-688.
doi: 10.1189/jlb.3MR0117-015R
[9] Mitsios A, Arampatzioglou A, Arelaki S , et al. NETopathies? Unraveling the dark side of old diseases through neutrophils. Front Immunol, 2016,7:678.
[10] Egan D F, Shackelford D B, Mihaylova M M , et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 2011,331(6016):456-461.
doi: 10.1126/science.1196371
[11] Ohsumi Y . Historical landmarks of autophagy research. Cell Res, 2014,24(1):9-23.
[12] Bento C F . Mammalian autophagy: how does it work. Annu Rev Biochem, 2016,85:685-713.
doi: 10.1146/annurev-biochem-060815-014556
[13] Birgisdottir Å B, Lamark T, Johansen T . The LIR motif-crucial for selective autophagy. Cell Sci, 2013,126(15):3237-3247.
[14] Lee J W, Park S, Takahashi Y , et al. The association of AMPK with ULK1 regulates autophagy. PLoS One, 2010,5(11):e15394.
doi: 10.1371/journal.pone.0015394
[15] Zhang D . AMPK regulates autophagy by phosphorylating BECN1 at threonine. Autophagy, 2016,12(9):1447-1459.
doi: 10.1080/15548627.2016.1185576
[16] García-Prat L, Sousa-Victor P, Muñoz-Cánoves P . Proteostatic and metabolic control of stemness. Cell Stem Cell, 2017,20(5):593-608.
doi: 10.1016/j.stem.2017.04.011
[17] Warr M R, Binnewies M, Flach J , et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 2013,494(7437):323-327.
[18] Jin G, Xu C, Zhang X , et al. Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nat Immunol, 2018,19(1):29-40.
doi: 10.1038/s41590-017-0002-1
[19] Ho T T. Warr M R Adelman E R , et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature, 2017,543(7644):205-210.
[20] Riffelmacher T, Clarke A, Richter F C , et al. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity, 2017,47(3):466-480.
doi: 10.1016/j.immuni.2017.08.005
[21] Sidaway P . Neutrophil differentiation is autophagy dependent. Nat Rev Immunol, 2017, 27:17(11).
[22] Huang Y, Tan P, Wang X , et al. Transcriptomic insights into temporal expression pattern of autophagy genes during monocytic and granulocytic differentiation. Autophagy, 2018,14(3):558-559.
doi: 10.1080/15548627.2018.1425060
[23] Martinez J, Malireddi R K, Lu Q , et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol, 2015,17(7):893-906.
[24] Kimmey J M, Huynh J P, Weiss L A , et al. Unique role for ATG5 in neutrophil-mediated immunopathology during tuberculosis infection. Nature, 2015,528(7583):565-569.
[25] Rinchai D, Riyapa D, Buddhisa S , et al. Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils. Autophagy, 2015,11(5):748-755.
doi: 10.1080/15548627.2015.1040969
[26] Ullah I, Ritchie N D, Evans T J . The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae. Innate Immun, 2017,23(5):413-423.
doi: 10.1177/1753425917704299
[27] Yin C, Heit B . Armed for destruction: formation, function and trafficking of neutrophil granules. Cell Tissue Res, 2018,371(3):455-471.
doi: 10.1007/s00441-017-2731-8
[28] Metzler K D, Goosmann C, Lubojemska A , et al. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep, 2014,8(3):883-896.
doi: 10.1016/j.celrep.2014.06.044
[29] Bhattacharya A, Wei Q, Shin J N , et al. Autophagy is required for neutrophil-mediated inflammation. Cell Rep, 2015,12(11):1731-1739.
doi: 10.1016/j.celrep.2015.08.019
[30] Brinkmann V, Reichard U, Goosmann C . Neutrophil extracellular traps kill bacteria. Science, 2004,303(5663):1532-1535.
doi: 10.1126/science.1092385
[31] Jorch S K, Kubes P . An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med, 2017,23(3):279-287.
[32] Sollberger G, Tilley D O, Zychlinsky A . Neutrophil extracellular traps: the biology of chromatin externalization. Dev Cell, 2018,44(5):542-553.
doi: 10.1016/j.devcel.2018.01.019
[33] Apostolidou E, Skendros P, Kambas K , et al. Neutrophil extracellular traps regulate IL-1β-mediated inflammation in familial Mediterranean fever. Ann Rheum Dis, 2016,75(1):269-277.
doi: 10.1136/annrheumdis-2014-205958
[34] Skendros P, Chrysanthopoulou A, Rousset F , et al. Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1β-mediated familial Mediterranean fever attack through autophagy-driven neutrophil extracellular traps. Allergy Clin Immunol, 2017,140(5):1378-1387.
doi: 10.1016/j.jaci.2017.02.021
[35] Angelidou I, Chrysanthopoulou A, Mitsios A , et al. REDD1/Autophagy pathway is associated with Neutrophil driven IL-1β inflammatory response in active ulcerative colitis. J Immunol, 2018,200(12):3950-3961.
doi: 10.4049/jimmunol.1701643
[36] Tang S, Zhang Y, Yin S W , et al. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA associated vasculitis. Clin Exp Immunol, 2015,180(3):408-418.
doi: 10.1111/cei.12589
[37] Lood C, Blanco L P, Purmalek M M , et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med, 2016,22(2):146-153.
[38] Papayannopoulos V . Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol, 2018,18(2):134-147.
[39] Remijsen Q, Vanden Berghe T, Wirawan E , et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res, 2011,21(2):290-304.
[40] Itakura A, McCarty O J . Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell Physiol, 2013,305(3):C348-C354.
doi: 10.1152/ajpcell.00108.2013
[41] Xu F, Zhang C, Zou Z , et al. Aging related Atg5 defect impairs neutrophil extracellular traps formation. Immunology, 2017,151(4):417-432.
doi: 10.1111/imm.2017.151.issue-4
[42] Hazeldine J, Harris P, Chapple I L , et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell, 2014,13(4):690-698.
doi: 10.1111/acel.12222
[43] Vieira da Silva Pellegrina D, Severino P, Vieira Barbeiro H , et al. Septic shock in advanced age: transcriptome analysis reveals altered molecular signatures in neutrophil granulocytes. PLoS One, 2015,10(6):e0128341.
doi: 10.1371/journal.pone.0128341
[44] Ma R, Li T, Cao M , et al. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis, 2016,7(6):e2283.
[45] Teimourian S, Moghanloo E . Role of PTEN in neutrophil extracellular trap formation. Mol Immunol, 2015,66(2):319-324.
doi: 10.1016/j.molimm.2015.03.251
[46] Germic N, Stojkov D, Oberson K , et al. Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation. Immunology, 2017,152(3):517-525.
doi: 10.1111/imm.2017.152.issue-3
[47] Pieterse E, Rother N, Yanginlar C , et al. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Front Immunol, 2016,7:484.
[48] Bendorius M, Neeli I, Wang F . The mitochondrion-lysosome axis in adaptive and innate immunity: effect of lupus regulator peptide P140 on mitochondria autophagy and NETosis. Front Immunol, 2018,9:2158.
doi: 10.3389/fimmu.2018.02158
[49] Angelidou I, Chrysanthopoulou A, Mitsios A . REDD1/autophagy pathway is associated with neutrophil driven IL-βinflammatory response in active ulcerative colitis. Immunol, 2018,200(12):3950-3961.
doi: 10.4049/jimmunol.1701643
[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[3] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[4] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[5] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[6] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[7] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[8] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[9] 张艳婷,郭玉峰,杨芝红,杨少奇. CD177 +中性粒细胞在溃疡性结肠炎患者外周血中的表达及临床意义[J]. 中国生物工程杂志, 2019, 39(9): 58-61.
[10] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[11] 洪丹彤,张帆,王淑娥,王红霞,刘昆梅,徐广贤,霍正浩,郭乐. miR-17-5p靶向自噬相关蛋白ATG7调控巨噬细胞抗结核分枝杆菌感染作用的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 1-8.
[12] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[13] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[14] 汪路,杨丽媛,唐雨婷,陶瑶,雷力,敬一佩,蒋雪坷,张伶. 干扰PKM2对人白血病细胞增殖和凋亡的影响及潜在机制 *[J]. 中国生物工程杂志, 2019, 39(3): 13-20.
[15] 沈冰蕾,王宇轩,韩硕,李熹,杨卓妮娜,邹紫雯,刘娟. 非编码RNA在细胞自噬中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 56-63.