Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (10): 111-117    DOI: 10.13523/j.cb.20171015
综述     
丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展
李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川
西北工业大学生命学院空间生物实验模拟技术国防重点学科实验室 西安 710072
Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering
LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan
Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China
 全文: PDF(543 KB)   HTML
摘要: 丝素蛋白(silk fibroin,SF)和壳聚糖(chitosan,CS)具有良好的生物相容性和可降解性,然而单一组分的SF和CS支架材料的诸多缺点限制了其在组织工程研究中的应用。SF/CS复合材料克服单一组分SF和CS支架的缺点,具有力学性能优良、可塑性好、孔隙率及孔径可调和组分优势互补等特点。多种方法制备的SF/CS复合材料(微米/纳米颗粒、膜、纳米纤维、水凝胶和三维多孔支架)已用于骨、软骨、皮肤、神经、脂肪、心脏和角膜等组织工程或组织损伤修复的研究中。目前,国内外对于SF/CS复合材料在组织工程中应用的研究尚处于起步阶段。主要对SF/CS复合材料的特点、制备方法以及在多种组织工程中应用的研究现状进行了简要介绍。
关键词: 壳聚糖组织工程丝素蛋白组织工程支架    
Abstract: Silk fibroin (SF) and chitosan (CS) have excellent biocompatibility and biodegradability, however the disadvantages of pure SF and CS scaffold limit their application in tissue engineering. SF/CS composites that can overcome the shortcoming of pure SF and CS scaffold have excellent mechanical properties, plasticity, tunable porosity and pore size, and component complementary advantages. SF/CS composites (micro/nano particles, membranes, nanofibers, hydrogels and 3D porous scaffolds) have been used in bone, cartilage, skin, nerve, fat, heart and cornea tissue engineering and injury repair. At present, the research on SF/CS composites at home and abroad is still in its infancy. The characteristics, the preparation methods and application of SF/CS composites in tissue engineering were briefly introduced.
Key words: Silk fibroin    Chitosan    Tissue engineering scaffold    Tissue engineering
收稿日期: 2017-06-27 出版日期: 2017-10-25
ZTFLH:  Q819  
基金资助: 国家自然科学基金(U1632126)、中央高校基本科研业务费专项资金(3102017OQD039)资助项目
通讯作者: 尹大川,yindc@nwpu.edu.cn     E-mail: yindc@nwpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何凤利
刘雅丽
李大为
何进
叶雅静
尹大川
邓旭东

引用本文:

李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.

LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering. China Biotechnology, 2017, 37(10): 111-117.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171015        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I10/111

[1] 姚康德, 尹玉基. 组织工程相关生物材料. 北京:化学工业出版社, 2003. 3-5, 8-10. Yao K D, Yin Y J. Biomaterials for Tissue Engineering. Beijing:Chemical Industry Press, 2003. 3-5, 8-10.
[2] 熊党生. 生物材料与组织工程. 北京:科学出版社, 2010. 222-223, 249-250. Xiong D S. Biomaterials and Tissue Engnieering. Beijing:Science Press, 2010. 222-223, 249-250.
[3] Kundu B, Rajkhowa R, Kundu S C, et al. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev, 2013, 65(4):457-470.
[4] Kim I Y, Seo S J, Moon H S, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv, 2008, 26(1):1-21.
[5] Mondal M. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,——a review. Caspian Journal of Environmental Sciences, 2007, 5(2):63-76.
[6] Zhou C Z, Confalonieri F, Jacquet M, et al. Silk fibroin:structural implications of a remarkable amino acid sequence. Proteins:Structure, Function, and Bioinformatics, 2001, 44(2):119-122.
[7] Shang S, Zhu L, Fan J. Intermolecular interactions between natural polysaccharides and silk fibroin protein. Carbohydrate Polymers, 2013, 93(2):561-573.
[8] Pérez R J, Viney C, Llorca J, et al. Mechanical properties of single-brin silkworm silk. Journal of Applied Polymer Science, 2000, 75(10):1270-1277.
[9] Jayakumar R, Prabaharan M, Muzzarelli R A. Chitosan for Biomaterials Ⅱ. In:Liu X, Ma L, Mao Z, et al. Chitosan-Based Biomaterials for Tissue Repair and Regeneration. Berlin:Springer-Verlag Berlin, 2011. 81-127.
[10] Di Martino A, Sittinger M, Risbud M V. Chitosan:a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005, 26(30):5983-5990.
[11] Costa-Pinto A R, Reis R L, Neves N M. Scaffolds based bone tissue engineering:the role of chitosan. Tissue Engeering Part B Reviews, 2011, 17(5):331-347.
[12] Jiang T, Deng M, James R, et al. Micro-and nanofabrication of chitosan structures for regenerative engineering. Acta Biomaterialia, 2014, 10(4):1632-1645.
[13] Park S J, Lee K Y, Ha W S, et al. Structural changes and their effect on mechanical properties of silk fibroin/chitosan blends. Journal of Applied Polymer Science, 1999, 74(11):2571-2575.
[14] Cai Z X, Mo X M, Zhang K H, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. International Journal of Molecular Sciences, 2010, 11(9):3529-3539.
[15] Kweon H, Ha H C, Um I C, et al. Physical properties of silk fibroin/chitosan blend films. Journal of Applied Polymer Science, 2001, 80(7):928-934.
[16] Varshini V, Pramanik K, Biswas A. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Journal of Biomaterials Science Polymer Edition, 2016, 27(7):657-674.
[17] 刘岩, 吕志强, 张存, 等. IBDV丝素蛋白/壳聚糖DNA微球疫苗的制备及免疫原性分析.生物工程学报, 2014, 30(3):393-403. Liu Y, Lv Z Q, Zhang C, et al. Preparation and immunogenicity of silk fibroin/chitosan microspheres for DNA vaccine delivery against infectious bursal disease virus. Chinese Journal of Biotechnology, 2014, 30(3):393-403.
[18] Chung T W, Chang C H, Ho C W. Incorporating chitosan (CS) and TPP into silk fibroin (SF) in fabricating spray-dried microparticles prolongs the release of a hydrophilic drug. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(4):592-597.
[19] Aliramaji S, Zamanian A, Mozafari M. Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Materials Science & Engineering C-Materials for Biological Applications, 2017, 70(1):736-744.
[20] Yu P, Guo J, Li J, et al. Repair of skin defects with electrospun collagen/chitosan and fibroin/chitosan compound nanofiber scaffolds compared with gauze dressing. Journal of Biomaterials and Tissue Engineering, 2017, 7(5):386-392.
[21] Srivastava C M, Purwar R. Chitosan-finished Antheraea mylitta silk fibroin nonwoven composite films for wound dressing. Journal of Applied Polymer Science, 2017, 134(1):44341.
[22] Gu Y, Zhu J, Xue C, et al. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials, 2014, 35(7):2253-2263.
[23] Chen J P, Chen S H, Lai G J. Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Research Letters, 2012, 7(170):1-11.
[24] Wu J, Liu J, Shi Y, et al. Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64(4):161-172.
[25] Chen X, Li W J, Zhong W, et al. pH sensitivity and ion sensitivity of hydrogels based on complex-forming chitosan/silk fibroin interpenetrating polymer network. Journal of Applied Polymer Science, 1997, 65(11):2257-2262.
[26] 亢婷, 王刚, 刘毅, 等. 壳聚糖修饰丝素蛋白与人脂肪间充质干细胞体外构建组织工程脂肪. 中国组织工程研究, 2014, 18(39):6323-6328. Kang T, Wang G, Liu Y, et al. Construction of tissue engineered adipose using human adipose stem cells with chitosan-modified silk fibroin. Chinese Journal of Tissue Engineering Research, 2014, 18(39):6323-6328.
[27] Hu J X, Cai X, Mo S B, et al. Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering. Chinese Journal of Polymer Science, 2015, 33(12):1661-1671.
[28] Naeimi M, Rafienia M, Fathi M, et al. Incorporation of chitosan nanoparticles into silk fibroin-based porous scaffolds:Chondrogenic differentiation of stem cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65(4):202-209.
[29] Zeng S, Liu L, Shi Y, et al. Characterization of silk fibroin/chitosan 3D porous scaffold and in vitro cytology. Plos One, 2015, 10(6):e0128658.
[30] Qi X N, Mou Z L, Zhang J, et al. Preparation of chitosan/silkfibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds. Journal of Biomedical Materials Research Part A, 2014, 102(2):366-372.
[31] Lai G J, Shalumon K T, Chen J P. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds. International Journal of Nanomedicine, 2015, 10(1):567-584.
[32] Ran J, Hu J, Sun G, et al. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range. International Journal of Biological Macromolecules, 2016, 93(11):87-97.
[33] Song J M, Shin S H, Kim Y D, et al. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects:micro-computed tomography analysis. International Journal of Oral Science, 2014, 6(2):87-93.
[34] Tong S, Xu D P, Liu Z M, et al. Synthesis of the new-type vascular endothelial growth factor-silk fibroin-chitosan three-dimensional scaffolds for bone tissue engineering and in vitro evaluation. Journal of Craniofacial Surgery, 2016, 27(2):509-515.
[35] Shalumon K T, Lai G J, Chen C H, et al. Modulation of bone-specific tissue regeneration by incorporating bone morphogenetic protein and controlling the shell thickness of silk fibroin/chitosan/nanohydroxyapatite core-shell nanofibrous membranes. Acs Applied Materials & Interfaces, 2015, 7(38):21170-21181.
[36] Bhardwaj N, Kundu S C. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials, 2012, 33(10):2848-2857.
[37] Bhardwaj N, Nguyen Q T, Chen A C, et al. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials, 2011, 32(25):5773-5781.
[38] Deng J, She R, Huang W, et al. A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. Journal of Materials Science-Materials in Medicine, 2013, 24(8):2037-2046.
[39] Zang M, Zhang Q, Davis G, et al. Perichondrium directed cartilage formation in silk fibroin and chitosan blend scaffolds for tracheal transplantation. Acta Biomaterialia, 2011, 7(9):3422-3431.
[40] Kasoju N, Bora U. Silk fibroin in tissue engineering. Advanced Healthcare Materials, 2012, 1(4):393-412.
[41] Groeber F, Holeitera M, Hampel M, et al. Skin tissue engineering——in vivo and in vitro applications. Clinics in Plastic Surgery, 2012, 39(2):XI.
[42] Luangbudnark W, Viyoch J, Laupattarakasem W, et al. Properties and biocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering. The Scientific World Journal, 2012,2012(5):697201.
[43] Guang S, An Y, Ke F, et al. Chitosan/silk fibroin composite scaffolds for wound dressing. Journal of Applied Polymer Science, 2015, 132(35):42503.
[44] Gu Z, Xie H, Huang C, et al. Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing. International Journal of Biological Macromolecules, 2013, 58(7):121-126.
[45] Sharma C, Dinda A K, Potdar P D, et al. Fabrication of quaternary composite scaffold from silk fibroin, chitosan, gelatin, and alginate for skin regeneration. Journal of Applied Polymer Science, 2015, 132(44):42743.
[46] Zhou Y, Yang H, Liu X, et al. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. International Journal of Biological Macromolecules, 2013, 53(2):88-92.
[47] Li D, Jiao G, Zhang W, et al. Hybrid scaffolding strategy for dermal tissue reconstruction:a bioactive glass/chitosan/silk fibroin composite. Rsc Advances, 2016, 6(24):19887-19896.
[48] Wei Y, Gong K, Zheng Z, et al. Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. Journal of Materials Science-Materials in Medicine, 2011, 22(8):1947-1964.
[49] Yao M, Zhou Y, Xue C, et al. Repair of rat sciatic nerve defects by using allogeneic bone marrow mononuclear cells combined with chitosan/silk fibroin scaffold. Cell Transplantation, 2016, 25(5):983-993.
[50] 亢婷, 王刚, 刘毅, 等. 改性丝素蛋白支架与生长因子基因修饰脂肪间充质干细胞构建组织工程脂肪. 中国组织工程研究, 2014, 18(52):8450-8455. Kang T, Wang G, Liu Y, et al. In vitro construction of tissue engineered adipose using vascular endothelial growth factor 165 gene-modified human adipose derived stem cells with chitosan-surface modified silk fibroin scaffolds. Chinese Journal of Tissue Engineering Research, 2014, 18(52):8450-8455.
[51] Chi N H, Yang M C, Chung T W, et al. Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydrate Polymers, 2013, 92(1):591-597.
[52] Guan L, Tian P, Ge H, et al. Chitosan-functionalized silk fibroin 3D scaffold for keratocyte culture. Journal of Molecular Histology, 2013, 44(5):609-618.
[53] Guan L, Ge H, Tang X, et al. Use of a silk fibroin-chitosan scaffold to construct a tissue-engineered corneal stroma. Cells Tissues Organs, 2013, 198(3):190-197.
[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[3] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[4] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[5] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[6] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[7] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[8] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[9] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.
[10] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[11] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[12] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[13] 李婷, 孙静, 赵相哲, 连立强, 谢富强. 骨形成蛋白2/珍珠层粉/壳聚糖支架制备及生物性能研究[J]. 中国生物工程杂志, 2015, 35(11): 1-6.
[14] 王皓, 吴丽, 朱小花, 刘旺旺, 杨公明. 甲壳素脱乙酰酶的研究概况及展望[J]. 中国生物工程杂志, 2015, 35(1): 96-103.
[15] 王佃亮. 组织器官三维构建及原位组织工程概念——组织工程连载之四[J]. 中国生物工程杂志, 2014, 34(8): 112-116.