Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (7): 22-31    DOI: 10.13523/j.cb.2103050
研究报告     
盐增强培养对弗氏链霉菌产新霉素的影响
王珊1,薛正莲1,2,3,*(),孙俊峰1,王芳1,周健1,刘艳1,2,3,王洲1,2,3
1 安徽工程大学生物与化学工程学院 芜湖 241000
2 微生物发酵安徽省工程研究中心 芜湖 241000
3 安徽省工业微生物分子育种工程实验室 芜湖 241000
Effect of Salt-enhanced Culture on the Production of Neomycin by Streptomyces fradiae
WANG Shan1,XUE Zheng-lian1,2,3,*(),SUN Jun-feng1,WANG Fang1,ZHOU Jian1,LIU Yan1,2,3,WANG Zhou1,2,3
1 College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
2 Anhui Engineering Technology Research Center of Microbial Fermentation, Wuhu 241000, China
3 Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
 全文: PDF(1735 KB)   HTML
摘要:

目的: 弗氏链霉菌(Streptomyces fradiae)作为氨基糖苷类抗生素新霉素的主要生产菌株,其新霉素B具有抗菌活性强、抗癌、抗HIV等作用,提高新霉素B的效价具有重要意义。方法: 在满足微生物正常生长所需盐离子的条件下,通过盐增强培养的方式向培养基中添加不同种类、浓度无机盐来改变细胞壁附近的理化特性、渗透压以及培养基中的碳氮比。结果: 不同无机盐对新霉素B效价影响程度由高到低为(NH4)2SO4、NaCl、KCl、K2SO4;当添加60 mmol/L(NH4)2SO4时新霉素B的效价达到最高为15 864 U/mL,而NaCl在80 mmol/L浓度时产量最高为7 429.7 U/mL,相比未添加无机盐分别提高3.8倍和0.82倍。在含有80 mmol/L的NaCl的发酵培养基中添加不同浓度的(NH4)2SO4并定时取样检测其中氨基氮、还原糖、pH、TG、菌浓以及新霉素B效价的变化,发现60 mmol/L(NH4)2SO4浓度下氨基氮、还原糖、TG的消耗速率加快,菌体比生长速率μ最大为0.097/h,新霉素B的合成加快且产量提高为17 399 U/mL,同时菌丝呈现出聚集变短的形态且产孢提前。结论: 盐增强培养方式既可以作为一种形态学工程手段,通过改变弗氏链霉菌的微观形态来促进次级代谢产物新霉素B产量的提高,同时也可以作为培养基优化策略来提高新霉素B的产量,这为进一步提高弗氏链霉菌中次级代谢产物产量的研究奠定了基础。

关键词: 弗氏链霉菌盐增强培养新霉素    
Abstract:

Objective: Streptomyces fradiae is the main production strain of the aminoglycoside antibiotic neomycin. Its neomycin B has strong antibacterial activity, anti-cancer and anti-HIV effects, and it is of great significance to increase the titer of neomycin B.Methods: We added different kinds and concentrations of inorganic salts to the medium to change the physical and chemical properties near the cell wall, osmotic pressure and C/N ratio of the medium under the condition of satisfying the salt ions required for the normal growth of microorganisms.Results: The degree of influence of different inorganic salts on the titer of neomycin B from high to low is (NH4)2SO4, NaCl, KCl and K2SO4 from high to low, and the titer of neomycin B reached the highest value of 15 864 U/mL when 60 mmol/L (NH4)2SO4 was added, the maximum yield of NaCl at 80 mmol/L concentration was 7 429.7 U/mL, which was 3.8 times and 0.82 times higher than that without adding inorganic salts. Then we added different concentrations of (NH4)2SO4 to the culture medium containing 80 mmol/L NaCl and sampled them regularly to detect the changes of amino nitrogen, reducing sugar, pH, TG, bacterial concentration and neomycin B titer, it was found that the consumption rate of amino nitrogen, reducing sugar and TG was increased at the concentration of 60 mmol/L (NH4)2SO4, the maximum specific growth rate of mycelium was 0.097 /h, the synthesis of neomycin B was accelerated and the yield was increased to 17 399 U/mL, at the same time, the mycelium was shortened and the sporulation was advanced.Conclusion: The salt-enhanced culture could be used as a morphological engineering method to improve the yield of neomycin B by changing the microscopic morphology of Streptomyces fradiae. It can also be used as a medium optimization strategy to increase the yield of neomycin B, which laid the foundation for further studies on increasing the yield of Streptomyces secondary metabolite.

Key words: Streptomyces fradiae    Salt enhanced culture    Neomycin
收稿日期: 2021-03-21 出版日期: 2021-08-03
ZTFLH:  Q819  
通讯作者: 薛正莲     E-mail: xuezl@ahpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王珊
薛正莲
孙俊峰
王芳
周健
刘艳
王洲

引用本文:

王珊,薛正莲,孙俊峰,王芳,周健,刘艳,王洲. 盐增强培养对弗氏链霉菌产新霉素的影响[J]. 中国生物工程杂志, 2021, 41(7): 22-31.

WANG Shan,XUE Zheng-lian,SUN Jun-feng,WANG Fang,ZHOU Jian,LIU Yan,WANG Zhou. Effect of Salt-enhanced Culture on the Production of Neomycin by Streptomyces fradiae. China Biotechnology, 2021, 41(7): 22-31.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103050        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I7/22

图1  不同浓度无机盐下新霉素B的效价
图2  不同(NH4)2SO4浓度下的比生长速率和新霉素B效价
图3  不同(NH4)2SO4浓度下的pH
图4  不同(NH4)2SO4浓度下的TG、氨基氮和残糖
图5  60 mmol/L (NH4)2SO4添加下的发酵过程参数
图6  无(NH4)2SO4添加下的发酵过程参数
发酵过程参数 (NH4)2SO4浓度
0 mmol/L 60 mmol/L
最大比生长率(1/h) 0.06 0.097
新霉素B效价(U/mL) 7 429.7 17 399
TG含量(mmol/gprot) 1.13 0.335
残糖含量(g/L) 14.01 7.33
氨基氮含量(mg/100mL) 66.223 74.219
最大新霉素B效价增长率[U/(mL·h)] 70.743 259.09
最大还原糖消耗速率[g /(L·h)] 0.789 1.228
最大TG消耗速率[mmol/(gprot·h)] 0.021 0.066
表1  两种(NH4)2SO4浓度下的发酵过程参数
图7  零添加和60 mmol/L(NH4)2SO4添加下的弗氏链霉菌在不同发酵时间的菌丝形态
[1] Baltz R H. Strain improvement in actinomycetes in the postgenomic era. Journal of Industrial Microbiology & Biotechnology, 2011, 38(6):657-666.
[2] 余飞, 孙俊峰, 刘鹏飞, 等. 弗氏链霉菌产硫酸新霉素高通量选育模型的建立及优化. 食品与发酵工业, 2019, 45(8):162-167, 177.
Yu F, Sun J F, Liu P F, et al. A high-throughput screening method for selecting Streptomyces fradiae mutants with improved neomycin yield and its optimization. Food and Fermentation Industries, 2019, 45(8):162-167, 177.
[3] Guan H Y, Li Y, Zheng J Z, et al. Important role of a LAL regulator StaR in the staurosporine biosynthesis and high-production of Streptomyces fradiae CGMCC 4.576. Science China Life Sciences, 2019, 62(12):1638-1654.
doi: 10.1007/s11427-019-1597-6
[4] Ray S, Maitra A, Biswas A, et al. Functional insights into the mode of DNA and ligand binding of the TetR family regulator TylP from Streptomyces fradiae. Journal of Biological Chemistry, 2017, 292(37):15301-15311.
doi: 10.1074/jbc.M117.788000
[5] Liu R, Deng Z X, Liu T G. Streptomyces species: ideal chassis for natural product discovery and overproduction. Metabolic Engineering, 2018, 50(1):74-84.
doi: 10.1016/j.ymben.2018.05.015
[6] Chen L C, Feng Z M, Yue H, et al. Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nature Communications, 2018, 9(1):4585-4591.
doi: 10.1038/s41467-018-07006-2
[7] Swiatkowska A, Dutkiewicz M, Machtel P, et al. Regulation of the p53 expression profile by hnRNP K under stress conditions. RNA Biology, 2020, 17(10):1402-1415.
doi: 10.1080/15476286.2020.1771944 pmid: 32449427
[8] Jaiswal S K, Oh J J, DePamphilis M L. Cell cycle arrest and apoptosis are not dependent on p53 prior to p53-dependent embryonic stem cell differentiation. Stem Cells (Dayton, Ohio), 2020, 38(9):1091-1106.
[9] Cuccarese M F, Singh A, Amiji M, et al. A novel use of gentamicin in the ROS-mediated sensitization of NCI-H460 lung cancer cells to various anticancer agents. ACS Chemical Biology, 2013, 8(12):2771-2777.
doi: 10.1021/cb4007024 pmid: 24093441
[10] Waksman S A, Lechevalier H A. Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science, 1949, 109(2830):305-307.
pmid: 17782716
[11] 马次郎, 陈奕公, 刘晓明, 等. 双拷贝tylD、tylF和tylJ弗氏链霉菌工程菌株构建及其发酵性能研究. 中国抗生素杂志, 2019, 44(8):915-919.
Ma C L, Chen Y G, Liu X M, et al. Construction of a double-copy tylD, tylF and tylJ Streptomyces fradie strain and evaluation of its fermentation performance. Chinese Journal of Antibiotics, 2019, 44(8):915-919.
[12] 李思聪, 孙宇辉. 氨基糖苷类抗生素生物合成研究进展. 中国抗生素杂志, 2019, 44(11):1261-1274.
Li S C, Sun Y H. Research advances in aminoglycoside biosynthesis. Chinese Journal of Antibiotics, 2019, 44(11):1261-1274.
[13] Kudo F, Eguchi T. Biosynthetic genes for aminoglycoside antibiotics. The Journal of Antibiotics, 2009, 62(9):471-481.
doi: 10.1038/ja.2009.76
[14] Dobson L F, O’Cleirigh C C, O’Shea D G. The influence of morphology on geldanamycin production in submerged fermentations of Streptomyces hygroscopicus var. geldanus. Applied Microbiology and Biotechnology, 2008, 79(5):859-866.
doi: 10.1007/s00253-008-1493-3 pmid: 18443778
[15] Antecka A, Bizukojc M, Ledakowicz S. Modern morphological engineering techniques for improving productivity of filamentous fungi in submerged cultures. World Journal of Microbiology and Biotechnology, 2016, 32(12):193-196.
pmid: 27718148
[16] Kaup B A, Ehrich K, Pescheck M, et al. Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces Fumago as an example. Biotechnology and Bioengineering, 2008, 99(3):491-498.
doi: 10.1002/(ISSN)1097-0290
[17] Meier K, Klöckner W, Bonhage B, et al. Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media. Biochemical Engineering Journal, 2016, 109:228-235.
doi: 10.1016/j.bej.2016.01.014
[18] Ibrahim D, Weloosamy H, Lim S H. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World Journal of Biological Chemistry, 2015, 6(3):265-271.
doi: 10.4331/wjbc.v6.i3.265 pmid: 26322181
[19] Liu H, Zheng Z M, Wang P, et al. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum. Applied Microbiology and Biotechnology, 2013, 97(8):3363-3372.
doi: 10.1007/s00253-012-4581-3
[20] 徐欢欢, 张红兵, 李会宣, 等. 常压室温等离子体技术在微生物诱变中的应用进展. 生物技术进展, 2020, 10(4):358-362.
Xu H H, Zhang H B, Li H X, et al. Application progress of atmospheric and room temperature plasma technology in microbial mutagenesis. Current Biotechnology, 2020, 10(4):358-362.
[21] 杨美成, 刘振, 严小蕾, 等. 柱前衍生化HPLC法测定硫酸庆大霉素和硫酸新霉素的含量. 中国临床药学杂志, 2004, 13(5):288-291.
Yang M C, Liu Z, Yan X L, et al. HPLC method using pre-column derivatization for determination of the content of gentamicin sulfate and neomycin sulfate. Chinese Journal of Clinical Pharmacy, 2004, 13(5):288-291.
[22] 张小贝, 朱国鹏, 祝志欣, 等. 利用3, 5-二硝基水杨酸法测定菜用甘薯叶中的多糖含量. 热带生物学报, 2017, 8(3):359-363, 377.
Zhang X B, Zhu G P, Zhu Z X, et al. Determination of the polysaccharide content of sweet potato leaves by using 3'5'-dinitrosalicylic acid(DNS). Journal of Tropical Biology, 2017, 8(3):359-363, 377.
[23] 黄晓东. 甲醛法测定酱油中氨基氮含量的简化. 中国调味品, 1997(12):23.
Huang X D. Simplification of determination of amino nitrogen content in soy sauce by formaldehyde method. Chinese Condiment, 1997(12):23.
[24] 刘鹏飞, 孙俊峰, 王珊, 等. 通气量对新霉素种子罐代谢影响的研究. 中国抗生素杂志, 2020, 45(12):1227-1231.
Liu P F, Sun J F, Wang S, et al. Effects of aeration rates on metabolism of neomycin seed tank. Chinese Journal of Antibiotics, 2020, 45(12):1227-1231.
[25] Tesche S, Rösemeier-Scheumann R, Lohr J, et al. Salt-enhanced cultivation as a morphology engineering tool for filamentous actinomycetes: increased production of labyrinthopeptin A1 in Actinomadura namibiensis. Engineering in Life Sciences, 2019, 19(11):781-794.
doi: 10.1002/elsc.v19.11
[26] 徐峰, 原玉洁, 黄明志, 等. 定量代谢物组学研究硫酸铵添加对高产红色糖多孢菌生理代谢的影响. 食品工业科技, 2020, 41(23):91-98.
Xu F, Yuan Y J, Huang M Z, et al. Impacts of ammonium sulfate addition on physiological metabolism of high-yielding Saccharopolyspora erythraea based on quantitative metabonomics. Science and Technology of Food Industry, 2020, 41(23):91-98.
[27] Gonzalez R, Islas L, Obregon A M, et al. Gentamicin formation in Micromonospora purpurea: stimulatory effect of ammonium. The Journal of Antibiotics, 1995, 48(6):479-483.
doi: 10.7164/antibiotics.48.479
[28] Technikova-Dobrova Z, Damiano F, Tredici S M, et al. Design of mineral medium for growth of Actinomadura sp ATCC 39727, producer of the glycopeptide A40926: effects of calcium ions and nitrogen sources. Applied Microbiology and Biotechnology, 2004, 65(6):671-677.
pmid: 15138731
[29] Zhu C H, Lu F P, He Y N, et al. Regulation of avilamycin biosynthesis in Streptomyces viridochromogenes: effects of glucose, ammonium ion, and inorganic phosphate. Applied Microbiology and Biotechnology, 2007, 73(5):1031-1038.
doi: 10.1007/s00253-006-0572-6
[30] Hong M, Mou H, Liu X Y, et al. 13C-assisted metabolomics analysis reveals the positive correlation between specific erythromycin production rate and intracellular propionyl-CoA pool size in Saccharopolyspora erythraea. Bioprocess and Biosystems Engineering, 2017, 40(9):1337-1348.
doi: 10.1007/s00449-017-1792-0
[31] Xia X, Lin S J, Xia X X, et al. Significance of agitation-induced shear stress on mycelium morphology and lavendamycin production by engineered Streptomyces flocculus. Applied Microbiology and Biotechnology, 2014, 98(10):4399-4407.
doi: 10.1007/s00253-014-5555-4
[32] Meng X X, Wang W Z, Xie Z J, et al. Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387. Science China Life Sciences, 2017, 60(9):980-991.
doi: 10.1007/s11427-017-9120-8
[33] Wu Y T, Kang Q J, Zhang L L, et al. Subtilisin-involved morphology engineering for improved antibiotic production in Actinomycetes. Biomolecules, 2020, 10(6):851.
doi: 10.3390/biom10060851
[34] Dobson L F, O’Cleirigh C C, O’Shea D G. The influence of morphology on geldanamycin production in submerged fermentations of Streptomyces hygroscopicus var. geldanus. Applied Microbiology and Biotechnology, 2008, 79(5):859-866.
doi: 10.1007/s00253-008-1493-3 pmid: 18443778
[35] Fuchino K, Flärdh K, Dyson P, et al. Cell-biological studies of osmotic shock response in Streptomyces spp. Journal of Bacteriology, 2017, 199(1):e00465-e00481.
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.