Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (12): 13-23    DOI: 10.13523/j.cb.2111014
玉米生物育种基础研究与关键技术专辑     
玉米遗传转化与商业化转基因玉米开发*
何伟1,2,祝蕾1,2,刘欣泽1,2,安学丽1,2,3,**(),万向元1,2,3,**()
1 北京科技大学生物与农业研究中心 化学与生物工程学院 顺德研究生院 北京 100083
2 北京中智生物农业国际研究院 北京 100192
3 北京首佳利华科技有限公司 主要作物生物育种北京市工程实验室 生物育种北京市国际科技合作基地 北京 100192
Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize
HE Wei1,2,ZHU Lei1,2,LIU Xin-ze1,2,AN Xue-li1,2,3,**(),WAN Xiang-yuan1,2,3,**()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
 全文: PDF(2428 KB)   HTML
摘要:

玉米是世界上种植面积最大的粮食作物,为了提高玉米产量和满足人类需求,转基因育种已经成为改良玉米性状的有效手段。自1996年美国种植商业化转基因玉米以来,利用玉米遗传转化技术开发商业化转基因玉米已取得巨大成功。综述了玉米遗传转化体系优化的重要步骤,系统总结了已开发的商业化转基因玉米的种类,并对玉米遗传转化未来发展方向进行了展望。

关键词: 玉米遗传转化转基因玉米商业化开发    
Abstract:

Maize is the largest cultivated grain crop in the world. To increase maize yield and meet human’s needs, genetic modification has become an effective breeding tool for maize improvement. Since commercial GM (genetically modified) maize was planted in the United States in 1996, genetic transformation has achieved a great success in developing commercialized GM maize. This article reviews the important steps during maize genetic transformation, summarizes the commercial development of transgenic maize varieties, and suggests the optimization of maize genetic transformation system, the safety of transgenic maize, and the commercial development of more GM maize varieties.

Key words: Maize    Genetic transformation    Transgenic maize    Commercial development
收稿日期: 2021-11-04 出版日期: 2022-01-13
ZTFLH:  Q819  
基金资助: * 国家自然科学基金面上项目(31971958);中央高校基本科研业务费专项资金(06500060)
通讯作者: 安学丽,万向元     E-mail: xulian@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何伟
祝蕾
刘欣泽
安学丽
万向元

引用本文:

何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.

HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize. China Biotechnology, 2021, 41(12): 13-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2111014        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I12/13

图1  玉米遗传转化流程
图2  Cre/LoxP位点特异性重组系统作用原理
图3  1996~2019年全球转基因作物和转基因玉米种植面积趋势图
表1  商业化的转基因玉米
[1] Secchi S, Gassman P W, Jha M, et al. Potential water quality changes due to corn expansion in the Upper Mississippi River Basin. Ecological Applications, 2011, 21(4): 1068-1084.
doi: 10.1890/09-0619.1
[2] Wallington T J, Anderson J E, Mueller S A, et al. Corn ethanol production, food exports, and indirect land use change. Environmental Science & Technology, 2012, 46(11): 6379-6384.
doi: 10.1021/es300233m
[3] Que Q D, Elumalai S, Li X G, et al. Maize transformation technology development for commercial event generation. Frontiers in Plant Science, 2014, 5: 379.
[4] 刘允军, 贾志伟, 刘艳, 等. 玉米规模化转基因技术体系构建及其应用. 中国农业科学, 2014, 47(21): 4172-4182.
Liu Y J, Jia Z W, Liu Y, et al. Establishment and application of large-scale transformation systems for maize. Scientia Agricultura Sinica, 2014, 47(21): 4172-4182.
[5] Gordon-Kamm W J, Spencer T M, Mangano M L, et al. Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell, 1990, 2(7): 603-618.
pmid: 12354967
[6] Fromm M E, Morrish F, Armstrong C, et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology, 1990, 8(9): 833-839.
[7] Walters D A, Vetsch C S, Potts D E, et al. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Molecular Biology, 1992, 18(2): 189-200.
pmid: 1310057
[8] Koziel M G, Beland G L, Bowman C, et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology, 1993, 11(2): 194-200.
[9] 王国英, 杜天兵, 张宏, 等. 用基因枪将Bt毒蛋白基因转入玉米及转基因植株再生. 中国科学 (B辑 化学 生命科学 地学), 1995, 25(1): 71-76, 113.
Wang G Y, Du T B, Zhang H, et al. Transform Bt insecticidal protein gene into maize by particle bombardments. Science in China, SerB, 1995, 25(1): 71-76, 113.
[10] 赵天永, 黄忠, 王国英, 等. 影响玉米基因枪转化效率的几个因素. 农业生物技术学报, 1997, 5(1): 37-41.
Zhao T Y, Huang Z, Wang G Y, et al. Factors influencing maize transformation by particle bombardments. Journal of Agricultural Biotechnology, 1997, 5(1): 37-41.
[11] Vain P, McMullen M D, Finer J J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Reports. 1993, 12(2): 84-88.
doi: 10.1007/BF00241940 pmid: 24202074
[12] Zhang S, Williams-Carrier R, Lemaux P. Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Reports, 2002, 21(3): 263-270.
doi: 10.1007/s00299-002-0513-5
[13] Shou H X, Frame B R, Whitham S A, et al. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Molecular Breeding, 2004, 13(2): 201-208.
doi: 10.1023/B:MOLB.0000018767.64586.53
[14] Vain P. Thirty years of plant transformation technology development. Plant Biotechnology Journal, 2007, 5(2): 221-229.
doi: 10.1111/pbi.2007.5.issue-2
[15] Pitzschke A, Hirt H. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. The EMBO Journal, 2010, 29(6): 1021-1032.
doi: 10.1038/emboj.2010.8
[16] Brencic A, Winans S C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiology and Molecular Biology Reviews, 2005, 69(1): 155-194.
pmid: 15755957
[17] Gould J, Devey M, Hasegawa O, et al. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiology, 1991, 95(2): 426-434.
pmid: 16668001
[18] Shen W H, Escudero J, Schläppi M, et al. T-DNA transfer to maize cells: histochemical investigation of beta-glucuronidase activity in maize tissues. PNAS, 1993, 90(4): 1488-1492.
pmid: 11607370
[19] Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 1996, 14(6): 745-750.
pmid: 9630983
[20] Zhao Z Y, Gu W N, Cai T S, et al. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Molecular Breeding, 2002, 8(4): 323-333.
doi: 10.1023/A:1015243600325
[21] Frame B R, Shou H X, Chikwamba R K, et al. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiology, 2002, 129(1): 13-22.
doi: 10.1104/pp.000653
[22] Frame B R, McMurray J M, Fonger T M, et al. Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Reports, 2006, 25(10): 1024-1034.
doi: 10.1007/s00299-006-0145-2
[23] Frame B, Main M, Schick R, et al. Genetic transformation using maize immature zygotic embryos. Plant Embryo Culture, 2011, 710: 327-341. DOI: 10.1007/978-1-61737-988-8_22.
doi: 10.1007/978-1-61737-988-8_22
[24] Vega J M, Yu W C, Kennon A R, et al. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Reports, 2008, 27(2): 297-305.
doi: 10.1007/s00299-007-0463-z
[25] 魏开发. 农杆菌介导的高效玉米遗传转化体系的建立. 遗传, 2009, 31(11): 1158-1170.
Wei K F. Establishment of high efficiency genetic transformation system of maize mediated by Agrobacterium tumefaciens. Hereditas, 2009, 31(11): 1158-1170.
[26] Lee H, Zhang Z J. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos. Cereal Genomics, 2014. DOI: 10.1007/978-1-62703-715-0_22.
doi: 10.1007/978-1-62703-715-0_22
[27] Bhattacharjee S, Lee L Y, Oltmanns H, et al. IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. The Plant Cell, 2008, 20(10): 2661-2680.
doi: 10.1105/tpc.108.060467
[28] Singh R K, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma, 2016, 253(3): 691-707.
doi: 10.1007/s00709-015-0905-3
[29] Lowe K, Wu E, Wang N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell, 2016, 28(9): 1998-2015.
doi: 10.1105/tpc.16.00124
[30] Mookkan M, Nelson-Vasilchik K, Hague J, et al. Selectable marker independent transformation of recalcitrant maize inbred B73 and Sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 2017, 36(9): 1477-1491.
doi: 10.1007/s00299-017-2169-1
[31] Anand A, Bass S H, Wu E, et al. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Molecular Biology, 2018, 97(1-2): 187-200.
doi: 10.1007/s11103-018-0732-y
[32] Yadava P, Abhishek A, Singh R, et al. Advances in maize transformation technologies and development of transgenic maize. Frontiers in Plant Science, 2016, 7: 1949.
[33] Negrotto D, Jolley M, Beer S, et al. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Reports, 2000, 19(8): 798-803.
doi: 10.1007/s002999900187 pmid: 30754872
[34] Wright M, Dawson J, Dunder E, et al. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Reports, 2001, 20(5): 429-436.
pmid: 24549451
[35] Reed J, Privalle L, Powell M L, et al. Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cellular & Developmental Biology-Plant, 2001, 37(2): 127-132.
[36] 淡俊豪, 夏玉梅, 詹祎捷, 等. 植物转基因删除技术研究进展. 分子植物育种, 2021, 19(12): 4005-4013.
Dan J H, Xia Y M, Zhan Y J, et al. Advances on gene deletion technology in transgenic plant. Molecular Plant Breeding, 2021, 19(12): 4005-4013.
[37] Liu F, Wang P D, Xiong X J, et al. Comparison of three Agrobacterium-mediated co-transformation methods for generating marker-free transgenic Brassica napus plants. Plant Methods, 2020, 16: 81.
doi: 10.1186/s13007-020-00628-y
[38] 祁永斌, 刘庆龙, 陆艳婷, 等. 转基因植物中删除选择标记基因的研究进展. 浙江农业学报, 2014, 26(5): 1387-1393.
Qi Y B, Liu Q L, Lu Y T, et al. Research progress of the selectable marker genes eliminated in the transgenic plants. Acta Agriculturae Zhejiangensis, 2014, 26(5): 1387-1393.
[39] Tuteja N, Verma S, Sahoo R K, et al. Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern. Journal of Biosciences, 2012, 37(1): 167-197.
doi: 10.1007/s12038-012-9187-5
[40] 渠柏艳, 于海清, 韩兆雪, 等. 可去除选择标记的转Bt基因抗虫玉米研究. 分子植物育种, 2004, 2(5): 649-653.
Qu B Y, Yu H Q, Han Z X, et al. Study on Bt transgenic insect resistant maize with removable selective marker. Molecular Plant Breeding, 2004, 2(5): 649-653.
[41] Zhang W, Subbarao S, Addae P, et al. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theoretical and Applied Genetics, 2003, 107(7): 1157-1168.
pmid: 14513214
[42] Zou X P, Peng A H, Xu L Z, et al. Efficient auto-excision of a selectable marker gene from transgenic Citrus by combining the Cre/loxP system and ipt selection. Plant Cell Reports, 2013, 32(10): 1601-1613.
doi: 10.1007/s00299-013-1470-x
[43] 国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2021, 41(1): 114-119.
International Service for the Acquisition of Agri-biotech Applications. Global status of commercialized biotech/gm crops in 2019. China Biotechnology, 2021, 41(1): 114-119.
[44] Kumar K, Gambhir G, Dass A, et al. Genetically modified crops: current status and future prospects. Planta, 2020, 251(4): 1-27.
doi: 10.1007/s00425-019-03297-x
[45] Basu S K, Dutta M, Goyal A, et al. Is genetically modified crop the answer for the next green revolution? GM Crops, 2010, 1(2): 68-79.
[46] Heck G R, Armstrong C L, Astwood J D, et al. Development and characterization of a CP4 EPSPS-based, glyphosate-tolerant corn event. Crop Science, 2005, 44(1): 329-339.
[47] Castiglioni P, Warner D, Bensen R J, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology, 2008, 147(2): 446-455.
doi: 10.1104/pp.108.118828 pmid: 18524876
[48] Harrigan G G, Ridley W P, Miller K D, et al. The forage and grain of MON 87460, a drought-tolerant corn hybrid, are compositionally equivalent to that of conventional corn. Journal of Agricultural and Food Chemistry, 2009, 57(20): 9754-9763.
doi: 10.1021/jf9021515 pmid: 19778059
[49] Wan X Y, Wu S W, Li X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era. Molecular Plant, 2021, 14(4): 531-534.
doi: 10.1016/j.molp.2021.02.004
[50] Hondred D, Young J K, Brink K, et al. Plant genomic DNA flanking SPT event and methods for identifying SPT event. United States, US2009210970(A1).[2021-11-04]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SOPD&dbname=SOPD2020&filename=US2009210970(A1)&uniplatform=NZKPT&v=fsWC8XkCK0_XqIWeKNCgvGr15zHumD-idX0Gd3fGL_43JIAGoWt-ZSwvSdXfaVMyAZGFu8TsdcY%3d.
[51] Raruang Y, Omolehin O, Hu D, et al. Host induced gene silencing targeting Aspergillus flavus aflM reduced aflatoxin contamination in transgenic maize under field conditions. Frontiers in Microbiology, 2020, 11: 754. DOI: 10.3389/fmicb.2020.00754.
doi: 10.3389/fmicb.2020.00754 pmid: 32411110
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[4] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[5] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[6] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[7] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[8] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[9] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[10] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[11] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.
[12] 安婷,季静,王昱蓉,马志刚,王罡,李倩,杨丹,张松皓. 百合鳞片的诱导分化及遗传转化效率分析[J]. 中国生物工程杂志, 2018, 38(1): 25-31.
[13] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[14] 田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.
[15] 柳双双,吴锁伟,饶力群,万向元. 玉米核雄性不育的分子机制研究与应用分析[J]. 中国生物工程杂志, 2018, 38(1): 100-107.