Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (12): 4-12    DOI: 10.13523/j.cb.2111010
玉米生物育种基础研究与关键技术专辑     
CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*
杨梦冰1,2,江易林1,2,祝蕾1,2,安学丽1,2,3,**(),万向元1,2,3,**()
1 北京科技大学生物与农业研究中心 化学与生物工程学院 顺德研究生院 北京 100083
2 北京中智生物农业国际研究院 北京 100192
3 北京首佳利华科技有限公司 主要作物生物育种北京市工程实验室 生物育种北京市国际科技合作基地 北京 100192
CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize
YANG Meng-bing1,2,JIANG Yi-lin1,2,ZHU Lei1,2,AN Xue-li1,2,3,**(),WAN Xiang-yuan1,2,3,**()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
 全文: PDF(1433 KB)   HTML
摘要:

CRISPR/Cas 系统具有操作简单、效率高等优势,为植物功能基因研究和作物遗传改良提供了重要支撑。介绍了CRISPR/Cas植物基因组编辑技术的研究进展,并对CRISPR/Cas系统及其衍生技术进行了详细比较;结合案例综述了CRISPR/Cas9基因编辑技术在玉米产量、品质、抗逆性改良,以及雄性不育系创制和单倍体诱导等方面的应用;同时针对CRISPR/Cas系统未来需要迫切解决的一些问题进行了分析和展望。

关键词: CRISPR/Cas系统基因组编辑植物基因组玉米遗传改良    
Abstract:

Due to their simplicity and high efficiency, CRISPR/Cas systems provide efficient tools for functional genomics and crop molecular breeding. In this review, we summarize the current developments of CRISPR/Cas genomic editing systems in plants and compare the differences between these systems and their derivative technologies. We review the applications of CRISPR/Cas9 editing technology in maize improvement focusing on yield, quality, disease resistance, abiotic stress resistance, male sterile line development and haploid induction. Finally, we discuss the future improvement of CRISPR/Cas systems and provide perspectives on prospect genome editing technologies.

Key words: CRISPR/Cas systems    Genome editing    Plant genome    Genetic improvement of maize
收稿日期: 2021-11-02 出版日期: 2022-01-13
ZTFLH:  Q819  
基金资助: * 国家自然科学基金面上项目(31971958);中央高校基本科研业务费专项资金(06500060)
通讯作者: 安学丽,万向元     E-mail: xuelian@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨梦冰
江易林
祝蕾
安学丽
万向元

引用本文:

杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.

YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize. China Biotechnology, 2021, 41(12): 4-12.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2111010        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I12/4

比较项目 CRISPR/Cas9 CRISPR/Cas12 CRISPR/Cas13 单碱基编辑 引导编辑
分类 Class II Type II Class II Type V Class II Type VI CRISPR/Cas9衍生工具 CRISPR/Cas9衍生工具
核心元件 tracRNA、crRNA、
Cas9
crRNA、Cas12a或
Cas12b
crRNA、Cas13a、
Cas13b或Cas13d
胞嘧啶或腺嘌呤脱氨酶、UGI、nCas9、sgRNA nCas9、M-MLV逆转录酶、pegRNA
关键结构域 RuvC、HNH RuvC-like、 Nuc HEPN HNH RuvC
靶向核酸类型 dsDNA dsDNA ssRNA dsDNA dsDNA
靶位点 PAM序列的5'端2~3 nt处 PAM序列下游18 nt处 和23 nt处 靶标ssRNA,可非特异性切割ssRNA PAM序列上游的C或A(5~12碱基内) 单链缺口处
靶位点限制 PAM序列通常为NGG 严格的 PAM 序列“TTTV” 需识别或不需识别PFS序列 PAM序列通常为NGG 受PAM限制较小
编辑效率 较高 较高 较高
脱靶频率 较高 较高 较低
优势 载体构建简单,可实现多靶点编辑 适用于更多装载量小的载体系统,有利于DNA片段的定点插入和替换 可以特异性靶向切割病毒RNA和真核细胞中的内源RNA 可以实现精确的碱基替换 有效地产生精确的碱基替换、插入和缺失等突变
缺点 会对细胞基因组造成一定的损伤 低温下编辑效率低 具有非特异性切割活性,脱靶率较高 同一编辑系统对不同靶点的编辑效率差异较大 在植物中的编辑效率是极低和不稳定
表1  CRISPR/Cas系统及衍生技术的比较
图1  CRISPR/Cas9和CRISPR/Cas12a基因编辑系统的工作原理
图2  基于CRISPR/Cas9系统的玉米基因组编辑技术流程
应用 靶标基因 基因功能 编辑方式 性状改良 参考文献
提高产量 ZmLG1 编码SBP转录因子类蛋白 碱基插入和缺失 减小叶夹角,提高种植密度 [30]
ZmCLE7 控制分生组织大小 碱基插入和缺失 行和籽粒产量增加 [31]
ZmFCP1
改善品质 ZmWx1 编码GBSS酶 碱基插入和缺失 糯玉米 [32]
ZmSh2 编码AGPase酶 碱基插入和缺失 甜玉米 [33]
增强抗逆性 ARGOS8 乙烯反应的负调节因子 片段插入 提高耐旱能力 [34]
ZmALS2 编码乙酰乳酸合成酶 碱基插入和缺失 抗除草剂 [35]
ZmALS1 编码乙酰乳酸合成酶 碱基替换 抗除草剂 [36]
ZmALS2
stiff1 编码F-box结构域蛋白 碱基缺失 提高茎秆强度,抗倒伏 [37]
GA20ox3 赤霉素生物合成相关基因 碱基插入和缺失 降低株高,抗倒伏 [38]
LOX3 编码脂氧合酶 碱基插入和缺失 抗玉米黑粉菌感染 [39]
调控开花时间 ZmPHYC1 编码玉米光敏色素蛋白 碱基插入和缺失 长日照条件表现为早花 [40]
ZmPHYC2
ZmCCT9 编码CCT转录因子 碱基缺失 长日照条件引起早开花 [41]
创制雄性不育系 MS26 编码细胞色素P450 碱基插入和缺失 花粉发育异常,雄性不育 [35]
MS45 编码异胡豆苷合成酶类似蛋白 碱基插入和缺失 花粉发育异常,雄性不育 [35]
ZmTMS5 编码RNase Z蛋白 碱基缺失 温敏雄性不育植株 [42]
ZmMS8 编码β-1,3-半乳糖基转移酶 碱基插入和缺失 花药发育异常,雄性不育 [43]
Dcl5 介导产生24 nt phasiRNA 碱基插入和缺失 温敏雄性不育植株 [44]
单倍体育种 ZmDMP 编码DUF679膜蛋白 碱基插入和缺失 诱导单倍体产生 [45]
ZmPLA1 编码磷脂酶A 碱基插入和缺失 诱导单倍体产生 [46]
多性状改良 - - 片段插入 多性状基因的聚合 [47]
表2  CRISPR/Cas9技术在玉米改良中的应用
[1] Maximiano M R, Távora F T P K, Prado G S, et al. CRISPR genome editing technology: a powerful tool applied to developing agribusiness. Journal of Agricultural and Food Chemistry, 2021, 69(23): 6379-6395.
doi: 10.1021/acs.jafc.1c01062 pmid: 34097395
[2] Christian M, Cermak T, Doyle E L, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757-761.
doi: 10.1534/genetics.110.120717 pmid: 20660643
[3] Urnov F D, Rebar E J, Holmes M C, et al. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 2010, 11(9): 636-646.
doi: 10.1038/nrg2842
[4] González Castro N G, Bjelic J, Malhotra G, et al. Comparison of the feasibility, efficiency, and safety of genome editing technologies. International Journal of Molecular Sciences, 2021, 22(19): 10355.
doi: 10.3390/ijms221910355
[5] Zhu H C, Li C, Gao C X. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21(11): 661-677.
doi: 10.1038/s41580-020-00288-9
[6] Barrangou R, Marraffini L A. CRISPR-cas systems: prokaryotes upgrade to adaptive immunity. Molecular Cell, 2014, 54(2): 234-244.
doi: 10.1016/j.molcel.2014.03.011 pmid: 24766887
[7] Makarova K S, Wolf Y I, Alkhnbashi O S, et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015, 13(11): 722-736.
doi: 10.1038/nrmicro3569 pmid: 26411297
[8] Makarova K S, Wolf Y I, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18(2): 67-83.
doi: 10.1038/s41579-019-0299-x pmid: 31857715
[9] Biswas S, Zhang D B, Shi J X. CRISPR/Cas systems: opportunities and challenges for crop breeding. Plant Cell Reports, 2021, 40(6): 979-998.
doi: 10.1007/s00299-021-02708-2
[10] Jinek M, Jiang F G, Taylor D W, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176): 1247997.
doi: 10.1126/science.1247997
[11] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829
[12] Mali P, Yang L H, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
doi: 10.1126/science.1232033
[13] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718
[14] Shan Q W, Wang Y P, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 686-688.
doi: 10.1038/nbt.2650
[15] Li J F, Norville J E, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688-691.
doi: 10.1038/nbt.2654
[16] Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(8): 691-693.
doi: 10.1038/nbt.2655
[17] Hille F, Richter H, Wong S P, et al. The biology of CRISPR-Cas: backward and forward. Cell, 2018, 172(6): 1239-1259.
doi: 10.1016/j.cell.2017.11.032
[18] Butiuc-Keul A, Farkas A, Carpa R, et al. CRISPR-Cas system: the powerful modulator of accessory genomes in prokaryotes. Microbial Physiology, 2021: 1-16.
[19] Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutation Research, 2011, 711(1-2): 61-72.
doi: 10.1016/j.mrfmmm.2011.02.005
[20] Siebert R, Puchta H. Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. The Plant Cell, 2002, 14(5): 1121-1131.
doi: 10.1105/tpc.001727
[21] Char S N, Neelakandan A K, Nahampun H, et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal, 2017, 15(2): 257-268.
doi: 10.1111/pbi.2017.15.issue-2
[22] Zetsche B, Gootenberg J S, Abudayyeh O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163(3): 759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[23] Shmakov S, Abudayyeh O O, Makarova K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell, 2015, 60(3): 385-397.
doi: 10.1016/j.molcel.2015.10.008 pmid: 26593719
[24] Bandyopadhyay A, Kancharla N, Javalkote V S, et al. CRISPR-Cas12a (Cpf1): a versatile tool in the plant genome editing tool box for agricultural advancement. Frontiers in Plant Science, 2020, 11: 584151.
doi: 10.3389/fpls.2020.584151
[25] Banakar R, Schubert M, Collingwood M, et al. Comparison of CRISPR-Cas9/Cas12a ribonucleoprotein complexes for genome editing efficiency in the rice phytoene desaturase (OsPDS) gene. Rice, 2020, 13(1): 1-7.
doi: 10.1186/s12284-019-0361-3
[26] Lee K, Zhang Y X, Kleinstiver B P, et al. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal, 2019, 17(2): 362-372.
doi: 10.1111/pbi.2019.17.issue-2
[27] Kim H, Kim S T, Ryu J, et al. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nature Communications, 2017, 8: 14406.
doi: 10.1038/ncomms14406
[28] Schindele A, Dorn A, Puchta H. CRISPR/Cas brings plant biology and breeding into the fast lane. Current Opinion in Biotechnology, 2020, 61: 7-14.
doi: S0958-1669(19)30060-6 pmid: 31557657
[29] Endo A, Masafumi M, Kaya H, et al. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Scientific Reports, 2016, 6: 38169.
doi: 10.1038/srep38169
[30] Li C X, Liu C L, Qi X T, et al. RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnology Journal, 2017, 15(12): 1566-1576.
doi: 10.1111/pbi.2017.15.issue-12
[31] Liu L, Gallagher J, Arevalo E D, et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nature Plants, 2021, 7(3): 287-294.
doi: 10.1038/s41477-021-00858-5
[32] Qi X T, Wu H, Jiang H Y, et al. Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. The Crop Journal, 2020, 8(3): 440-448.
doi: 10.1016/j.cj.2020.01.006
[33] Wilson L M, Whitt S R, Ibáñez A M, et al. Dissection of maize kernel composition and starch production by candidate gene association. The Plant Cell, 2004, 16(10): 2719-2733.
doi: 10.1105/tpc.104.025700
[34] Shi J R, Gao H R, Wang H Y, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 2017, 15(2): 207-216.
doi: 10.1111/pbi.2017.15.issue-2
[35] Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7: 13274.
doi: 10.1038/ncomms13274 pmid: 27848933
[36] Li Y M, Zhu J J, Wu H, et al. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. The Crop Journal, 2020, 8(3): 449-456.
doi: 10.1016/j.cj.2019.10.001
[37] Zhang Z H, Zhang X, Lin Z L, et al. A large transposon insertion in the stiff1 promoter increases stalk strength in maize. The Plant Cell, 2020, 32(1): 152-165.
doi: 10.1105/tpc.19.00486
[38] Zhang J J, Zhang X F, Chen R R, et al. Generation of transgene-free semidwarf maize plants by gene editing of Gibberellin-Oxidase20-3 using CRISPR/Cas9. Frontiers in Plant Science, 2020, 11: 1048.
doi: 10.3389/fpls.2020.01048
[39] Pathi K M, Rink P, Budhagatapalli N, et al. Engineering smut resistance in maize by site-directed mutagenesis of LIPOXYGENASE 3. Frontiers in Plant Science, 2020, 11: 543895.
doi: 10.3389/fpls.2020.543895
[40] Li Q Q, Wu G X, Zhao Y P, et al. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnology Journal, 2020, 18(12): 2520-2532.
doi: 10.1111/pbi.v18.12
[41] Huang C, Sun H Y, Xu D Y, et al. ZmCCT9 enhances maize adaptation to higher latitudes. PNAS, 2018, 115(2): E334-E341.
doi: 10.1073/pnas.1718058115
[42] Li J, Zhang H W, Si X M, et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. Journal of Genetics and Genomics, 2017, 44(9): 465-468.
doi: 10.1016/j.jgg.2017.02.002
[43] Chen R R, Xu Q L, Liu Y, et al. Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 system. Frontiers in Plant Science, 2018, 9: 1180.
doi: 10.3389/fpls.2018.01180
[44] Teng C, Zhang H, Hammond R, et al. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nature Communications, 2020, 11: 2912.
doi: 10.1038/s41467-020-16634-6
[45] Zhong Y, Liu C X, Qi X L, et al. Mutation of ZmDMP enhances haploid induction in maize. Nature Plants, 2019, 5(6): 575-580.
doi: 10.1038/s41477-019-0443-7 pmid: 31182848
[46] Liu C X, Li X, Meng D X, et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Molecular Plant, 2017, 10(3): 520-522.
doi: 10.1016/j.molp.2017.01.011
[47] Gao H R, Mutti J, Young J K, et al. Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Frontiers in Plant Science, 2020, 11: 535.
doi: 10.3389/fpls.2020.00535
[48] Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100(6): 635-644.
pmid: 10761929
[49] Moreno M A, Harper L C, Krueger R W, et al. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development, 1997, 11(5): 616-628.
doi: 10.1101/gad.11.5.616
[50] Nelson O E, Rines H W. The enzymatic deficiency in the waxy mutant of maize. Biochemical and Biophysical Research Communications, 1962, 9(4): 297-300.
doi: 10.1016/0006-291X(62)90043-8
[51] Gao H R, Gadlage M J, Lafitte H R, et al. Superior field performance of waxy corn engineered using CRISPR-Cas9. Nature Biotechnology, 2020, 38(5): 579-581.
doi: 10.1038/s41587-020-0444-0
[52] Dong L, Qi X T, Zhu J J, et al. Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnology Journal, 2019, 17(10): 1853-1855.
doi: 10.1111/pbi.13144 pmid: 31050154
[53] Sharma P, Gayen D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance. Plant Cell Reports, 2021, 40(11): 2081-2095.
doi: 10.1007/s00299-021-02739-9
[54] Matres J M, Hilscher J, Datta A, et al. Genome editing in cereal crops: an overview. Transgenic Research, 2021, 30(4): 461-498.
doi: 10.1007/s11248-021-00259-6
[55] Buckler E S, Holland J B, Bradbury P J, et al. The genetic architecture of maize flowering time. Science, 2009, 325(5941): 714-718.
doi: 10.1126/science.1174276 pmid: 19661422
[56] Jiang Y L, Li Z W, Liu X Z, et al. ZmFAR1 and ZmABCG26 regulated by microRNA are essential for lipid metabolism in maize anther. International Journal of Molecular Sciences, 2021, 22(15): 7916.
doi: 10.3390/ijms22157916
[57] Jiang Y L, An X L, Li Z W, et al. CRISPR/Cas9-based discovery of maize transcription factors regulating male sterility and their functional conservation in plants. Plant Biotechnology Journal, 2021, 19(9): 1769-1784.
doi: 10.1111/pbi.v19.9
[58] Seguí-Simarro J M, Jacquier N M A, Widiez T. Overview of in vitro and in vivo doubled haploid technologies. Doubled Haploid Technology, 2021. DOI: 10.1007/978-1-0716-1315-3_1.
doi: 10.1007/978-1-0716-1315-3_1
[59] Kelliher T, Starr D, Su X J, et al. One-step genome editing of elite crop germplasm during haploid induction. Nature Biotechnology, 2019, 37(3): 287-292.
doi: 10.1038/s41587-019-0038-x pmid: 30833776
[60] Wang B B, Zhu L, Zhao B B, et al. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Molecular Plant, 2019, 12(4): 597-602.
doi: 10.1016/j.molp.2019.03.006
[61] Cho S W, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 2014, 24(1): 132-141.
doi: 10.1101/gr.162339.113
[62] Ledford H. US regulation misses some GM crops. Nature, 2013, 500(7463): 389-390.
doi: 10.1038/500389a
[63] Jones H D. Regulatory uncertainty over genome editing. Nature Plants, 2015, 1: 14011.
doi: 10.1038/nplants.2014.11 pmid: 27246057
[1] 栗晓飞, 曹英秀, 宋浩. CRISPR/Cas9系统研究进展[J]. 中国生物工程杂志, 2017, 37(10): 86-92.
[2] 堵晶晶, 李强, 程霄, 沈林園, 李学伟, 张顺华, 朱砺. CRISPR/Cas系统的研究进展及其在畜禽遗传改良中的应用前景[J]. 中国生物工程杂志, 2016, 36(7): 92-103.
[3] 张祎祎, 吴嫣爽, 孙瑞珍, 雷蕾. CRISPR/Cas9介导的疾病模型构建与基因修复研究进展[J]. 中国生物工程杂志, 2016, 36(12): 98-103.
[4] 谢科, 饶力群, 李红伟, 安学丽, 方才臣, 万向元. 基因组编辑技术在植物中的研究进展与应用前景[J]. 中国生物工程杂志, 2013, 33(6): 99-104.
[5] 刘思也, 夏海滨. 一种新的由CRISPR/Cas系统介导的基因组靶向修饰技术[J]. 中国生物工程杂志, 2013, 33(10): 117-123.
[6] 杜艳艳. 美国国家植物基因组计划资助情况分析[J]. 中国生物工程杂志, 2010, 30(04): 131-134.
[7] 王伟, 朱平, 程克棣. 药用植物基因组及EST研究[J]. 中国生物工程杂志, 2004, 24(1): 1-5.
[8] 张贵友, 何聪芬, 陈金山. 小麦改良的方法与技术[J]. 中国生物工程杂志, 1999, 19(4): 67-72.
[9] 李子银, 胡会庆. 农杆菌介导的植物遗传转化进展[J]. 中国生物工程杂志, 1998, 18(1): 22-26,16.
[10] 施骏, 许耀. Ti质粒T区基因转移与整合分子机制的研究进展[J]. 中国生物工程杂志, 1993, 13(1): 5-10.
[11] 魏钧. 日本的水稻基因组研究计划[J]. 中国生物工程杂志, 1991, 11(6): 44-46.