Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (12): 88-102    DOI: 10.13523/j.cb.2111003
玉米生物育种基础研究与关键技术专辑     
玉米雄穗性状遗传结构与形成分子机制*
王彦博1,2,魏佳1,2,龙艳1,2,3,董振营1,2,**(),万向元1,2,3,**()
1 北京科技大学生物与农业研究中心 化学与生物工程学院 顺德研究生院 北京 100083
2 北京中智生物农业国际研究院 北京 100192
3 北京首佳利华科技有限公司 主要作物生物育种北京市工程实验室 生物育种北京市国际科技合作基地 北京 100192
Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize
WANG Yan-bo1,2,WEI Jia1,2,LONG Yan1,2,3,DONG Zhen-ying1,2,**(),WAN Xiang-yuan1,2,3,**()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
 全文: PDF(1654 KB)   HTML
摘要:

玉米为雌雄同株异花植物,其雄穗着生于植株顶部,雌穗腋生。雄穗一方面需产生足量花粉以保证雌穗授粉结实,另一方面由于对下部叶片的遮蔽作用和自身营养需求,其生长发育会同时影响叶片光合作用效率和能量分配,因此优化雄穗结构是提高玉米产量的重要措施之一。玉米雄穗性状包括雄穗分枝数、雄穗分枝长度、雄穗主轴长度、雄穗分枝总长度、雄穗分枝角度等,均为多基因控制的数量性状。自20世纪90年代,研究者开始利用数量性状位点(quantitative trait locus,QTL)定位方法解析玉米雄穗性状遗传结构;随着玉米自交系B73等参考基因组释放,以及DNA微阵列、基因组重测序等高通量基因分型技术的日益成熟,全基因组关联分析(genome-wide association study, GWAS)成为数量性状遗传研究的主流方法,目前已鉴定出大量玉米雄穗性状遗传位点。通过总结雄穗性状遗传定位研究结果,构建一致性图谱并挖掘定位热点区间,有助于进一步了解雄穗性状遗传结构特征及指导雄穗性状候选基因克隆。此外,通过对调控雄穗发育的已知基因进行功能分类,可为解析玉米雄穗发育的遗传网络和调控通路提供理论支撑。

关键词: 雄穗遗传结构数量性状位点QTL定位全基因组关联分析    
Abstract:

Maize is a monoecious plant with top terminal tassels and lateral ears. The tassels need to produce sufficient pollens to fertilize ears; however, due to the shading effect on the lower leaves and their own nutritional requirements, the growth and development of tassels have a negative effect on yield through affecting leaf photosynthesis and energy distribution of the whole plant. Optimizing the tassel architecture is thus urgent for maize yield improvement. Maize tassel traits include the number of tassel branches, the length of tassel branches, the length of the principal axis of the tassel, the total length of tassel branches, and the angle of tassel branching, which are all complex quantitative traits controlled by different genetic basis. Since the 1990s, researchers have begun to analyze the genetic structure of maize tassel traits by quantitative trait locus(QTL) mapping. With the release of the reference genome of the maize inbred line B73, and the improvement of high-throughput genotyping technologies such as DNA microarrays and genome resequencing, genome-wide association study(GWAS) has been widely applied in recent years, and a large number of loci associated with the maize tassel traits have been identified. Here, the genetic loci of maize tassel traits identified from different research periods were retrieved, and a consistent physical map was built. Furthermore, the genetic mapping hotspots were isolated which will be useful for the further understanding of the genetic structure of maize tassel traits and the guidance of the cloning of tassel-trait-related genes. At the same time, the cloned genes controlling tassel traits and the corresponding functional mechanism were summarized which will be helpful for further deciphering the genetic network and regulatory pathways of tassel development in maize.

Key words: Tassel    Genetic structure    Quantitative trait loci    QTL mapping    Genome-wide association study(GWAS)
收稿日期: 2021-10-31 出版日期: 2022-01-13
ZTFLH:  Q819  
基金资助: * 中央高校基本科研业务费专项资金(06500060);国家“万人计划”科技创新领军人才特殊支持经费(201608)
通讯作者: 董振营,万向元     E-mail: zydong@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王彦博
魏佳
龙艳
董振营
万向元

引用本文:

王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.

WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize. China Biotechnology, 2021, 41(12): 88-102.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2111003        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I12/88

图1  玉米花序发育过程示意图
染色体 TBN TL TLL TBL TBA 总计
Chr1 39/126 29/147 4/0 5/0 3/0 80/273
Chr2 46/170 14/56 5/0 1/0 3/0 69/226
Chr3 50/171 26/51 2/0 2/0 1/0 81/222
Chr4 31/135 19/73 1/0 1/0 1/0 53/206
Chr5 25/128 15/77 1/0 2/0 1/0 44/205
Chr6 20/63 18/89 3/0 0/0 2/0 43/152
Chr7 38/127 14/55 2/0 3/0 3/0 60/182
Chr8 23/67 13/50 1/0 1/0 1/0 39/117
Chr9 13/72 13/49 0/0 1/0 1/0 28/121
Chr10 22/50 5/29 1/0 1/0 2/0 31/79
总计 307/1 109 166/674 20/0 17/0 18/0 528/1 783
表1  玉米雄穗性状QTLs、QTNs总结
图2  雄穗性状相关QTLs、QTNs在玉米基因组上的分布
图3  雄穗相关性状QTL、QTN热点区间在玉米基因组的分布
生物学功能 基因名称 基因号 编码蛋白 染色体位置/bp 参考文献
干细胞增殖
和分化
CT2 Zm00001d027886 异三聚体GTP结合蛋白 Chr1: 16721214~16732176 [46]
ZmWUS1 Zm00001d001948 同源结构域转录因子 Chr2: 3415296~3419504 [47]
FEA3 Zm00001d040130 亮氨酸重复类受体蛋白 Chr3: 28709631~28715222 [48]
FEA2 Zm00001d051012 亮氨酸重复类受体蛋白 Chr4: 136764371~136769212 [49-50]
TD1 Zm00001d014793 亮氨酸重复类受体蛋白激酶 Chr5: 63455339~63461620 [51]
FEA4 Zm00001d037317 bZIP转录因子 Chr6: 120722612~120728273 [52]
ZmWUS2 Zm00001d026537 同源结构域转录因子 Chr10: 147854036~147858373 [47]
分生组织起始 BIF2 Zm00001d031068 丝苏氨酸激酶 Chr1: 175806351~175810932 [52-54]
BA2 Zm00001d003897 bHLH 转录因子 Chr2: 65741213~65756966 [55]
RA2 Zm00001d039694 LOB转录因子 Chr3: 12156780~12160565 [56]
BA1 Zm00001d042989 bHLH 转录因子 Chr3: 186013129~186016764 [57]
SPI1 Zm00001d044069 黄素单氧酶 Chr3: 218285795~218290961 [58]
BIF4 Zm00001d037691 Aux/IAA蛋白 Chr6: 134087331~134094170 [59]
RA1 Zm00001d020430 Cys2-His2 锌脂转录因子 Chr7: 113570910~113574437 [60]
RA3 Zm00001d022193 海藻糖-6磷酸磷酸酶 Chr7: 172483459~172490694 [61]
VT2 Zm00001d008700 色氨酸转氨酶 Chr8: 17393223~17400365 [62]
BIF1 Zm00001d008749 Aux/IAA蛋白 Chr8: 18950258~18955333 [63]
侧生分生
组织起始
UB2 Zm00001d031451 SBP-box转录因子 Chr1: 190381366~190388089 [64]
CG1 GRMZM2G022489 miR156 Chr3: 6926778~6929901 [65]
LG2 Zm00001d042777 bZIP蛋白 Chr3: 179386227~179397947 [66]
UB3 Zm00001d052890 SBP-box转录因子 Chr4: 203609847~203617018 [67]
BD1 Zm00001d022488 bHLH 转录因子 Chr7: 178604458~178608405 [68]
分生组织确定性 DCL1 Zm00001d027412 miRNA生物合成酶 Chr1: 4722956~4738332 [69]
TS4 GRMZM5G803935 SBP-box转录因子 Chr3: 144916511~144920220 [70]
性别决定 TS2 Zm00001d028806 氧化还原酶 Chr1: 46953827~46958171 [71]
TS1 Zm00001d003533 脂氧合酶蛋白 Chr2: 47103687~47110872 [72]
SILKY3 Zm00001d004130 核酸蛋白 Chr2: 85360621~85369941 [73]
NA1 Zm00001d042843 类固醇还原酶 Chr3: 181819965~181824489 [74]
营养阶段向生殖
阶段转变
ZFL2 Zm00001d002449 FLORICAULA/LEAFY同源转录因子 Chr2: 12912591~12918568 [75]
ZFL1 Zm00001d026231 FLORICAULA/LEAFY同源转录因子 Chr10: 141560362~141566267 [75]
花期转变 ZMM4 Zm00001d034045 MADS转录因子 Chr1: 282134674~282167480 [76]
分生组织活性 REL2 Zm00001d024523 转录共抑制因子 Chr10: 75992328~76004412 [77]
分生组织起始和小
穗分生组织命运
IDS1 Zm00001d034629 AP2转录因子 Chr1: 298421359~298428550 [78]
SID1 Zm00001d019230 AP2转录因子 Chr7: 23052961~23067089 [78]
苞片生长发育 TSH1 Zm00001d039113 GATA 锌脂蛋白 Chr6: 170246513~170250985 [79]
TSH4 Zm00001d020941 SBP-box转录因子 Chr7: 137272100~137278639 [80]
分生组织活性 RTE Zm00001d030656 硼转运蛋白 Chr1: 151219729~151227321 [81]
生物学功能 基因名称 基因号 编码蛋白 染色体位置/bp 参考文献
硼转运蛋白 TLS1 Zm00001d032461 硼通道蛋白 Chr1: 227447816~227454579 [82]
雄穗分枝角度 BAD1 Zm00001d005737 TCP转录因子 Chr2: 185420859~185424689 [83]
雄穗分枝数量 QDtbn1 Zm00001d053358 F-box蛋白 Chr4: 227482692~227483909 [84]
细胞分裂素
合成相关
KN1 Zm00001d033859 KNOX转录因子 Chr1: 276071835~276082742 [85]
表2  玉米雄花序发育相关基因总结
染色体 QTLs共定位区间/Mb QTNs共定位区间/Mb 重叠区间/Mb 花序发育相关基因
1 15.446~25.3061
33.147~35.164
43.914~47.6702
69.750~78.359
159.020~159.029
196.666~197.169
206.926~208.963
285.747~287.742
290.528~292.719
295.779~295.781
297.925~297.927
10.058~10.754
193.872~194.362
249.337~250.115
CT21
TS22
2 3.380~4.8633,4
13.851~19.120
26.728~28.948
30.533~30.966
32.090~32.227
189.209~189.291
224.131~224.195
2.707~3.5633
4.073~5.9494
11.325~14.995
23.168~25.037
48.245~49.011
185.577~186.715
212.155~216.148
241.047~242.030
3.380~4.0733
13.851~14.995
ZmWUS13LG14
3 147.771~147.966
170.148~192.5445,6,7
19.166~20.083
53.391~53.964
152.498~153.470
174.370~175.283
179.523~184.6676
186.752~187.900
188.380~189.319
214.197~214.926
215.696~217.604
218.524~220.242
174.370~175.283
179.523~184.6676
186.752~187.900
188.380~189.319
LG25
NA16
BA17
4 36.909~38.554
144.880~160.501
175.576~175.640
181.244~181.286
216.731~224.943
155.912~156.842
170.332~171.161
172.606~173.980
175.739~176.981
178.465~185.036
185.702~186.583
189.294~190.050
155.912~156.842
181.244~181.286
5 9.944~10.018
155.423~159.990
188.176~200.181
1.128~3.404
10.351~11.126
201.218~201.669
204.942~207.519
209.887~210.713
211.628~212.586
219.599~220.017
6 133.981~134.017
145.192~146.467
152.460~154.392
155.916~157.948
166.532~168.826
染色体 QTLs共定位区间/Mb QTNs共定位区间/Mb 重叠区间/Mb 花序发育相关基因
7 28.786~39.161
39.469~39.629
75.813~76.357
83.489~85.541
111.723~112.716
113.233~113.290
113.760~113.769
119.717~120.786
124.148~127.859
172.473~173.54810
176.727~179.050
22.844~23.7798
111.381~112.591
136.145...138.3789
152.803~153.336
171.930~174.33710
178.044~178.752
111.723~112.591
172.473~173.548
178.044~178.752
SID18
TSH49
RA310
8 15.980~15.989
136.686~137.739
173.517~173.711
175.355~175.398
175.627~176.060
17.301~21.47711,12
169.183~170.471
177.137~179.089
VT211
BIF112
9 51.718~68.851
93.176~102.973
136.739~137.501
154.942~155.936
10 87.396~88.064
93.611~115.710
14.451~14.796
141.562~142.40913
ZFL113
表S1  玉米雄穗分枝数的QTLs、QTNs热点区间总结
染色体 QTLs共定位区间/Mb QTNs共定位区间/Mb 重叠区间/Mb 花序发育相关基因
1 2.820~3.744
15.065~15.322
16.286~17.2391
22.995~23.959
51.839~52.516
105.973~106.673
190.267~191.2392,3
255.043~255.5684
282.157~288.638
303.295~304.801
CT21
UB22
RMR63
ZMM44
2 4.655~5.949
3 9.515~9.8295 D15
4 3.198~3.844
222.756~223.708
5 5.561~7.216 /
6 158.005~158.142 33.096~33.861
40.394~41.661
96.983~97.943
154.757~154.921
158.920~159.509
7 92.948~111.723409 141.989 307~142.675
157.587 210~159.490
8 124.501~126.340 178.010 329~180.921
表S2  玉米雄穗主轴长QTLs、QTNs热点区间
[1] Matsuoka Y, Vigouroux Y, Goodman M M, et al. A single domestication for maize shown by multilocus microsatellite genotyping. PNAS, 2002, 99(9): 6080-6084.
doi: 10.1073/pnas.052125199
[2] Doebley J F. The maize and teosinte male inflorescence: a numerical taxonomic study. Annals of the Missouri Botanical Garden, 1983, 70(1): 32.
doi: 10.2307/2399007
[3] Watson G C. Removing tassels from corn. New York (Ithaca) Agricultural ExperimentStation, 1892, 40: 147-155.
[4] Geraldi I O, Miranda-Filho J B, Vencovsky R. Estimates of genetic parameters for tassel characters in maize (Zea mays L.) and breeding perspectives. Maydica, 1985, 30: 1-14.
[5] Fischer K S, Edmeades G O, Johnson E C. Recurrent selection for reduced tassel branch number and reduced leaf area density above the ear in tropical maize populations 1. Crop Science, 1987, 27(6): 1150-1156.
doi: 10.2135/cropsci1987.0011183X002700060013x
[6] Duvick D N, Cassman K G. Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Science, 1999, 39(6): 1622-1630.
doi: 10.2135/cropsci1999.3961622x
[7] Hunter R B, Daynard T B, Hume D J, et al. Effect of tassel removal on grain yield of corn (Zea mays L.) 1. Crop Science, 1969, 9(4): 405-406.
doi: 10.2135/cropsci1969.0011183X000900040003x
[8] Grogan C O. Detasseling responses in corn 1. Agronomy Journal, 1956, 48(6): 247-249.
doi: 10.2134/agronj1956.00021962004800060001x
[9] Li M F, Zhong W S, Yang F, et al. Genetic and molecular mechanisms of quantitative trait loci controlling maize inflorescence architecture. Plant & Cell Physiology, 2018, 59(3): 448-457.
[10] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annual Review of Plant Biology, 2018, 69: 437-468.
doi: 10.1146/arplant.2018.69.issue-1
[11] Thompson B E, Hake S. Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiology, 2009, 149(1): 38-45.
doi: 10.1104/pp.108.129619 pmid: 19126693
[12] Liu C, Thong Z, Yu H. Coming into bloom: the specification of floral meristems. Development (Cambridge, England), 2009, 136(20): 3379-3391.
doi: 10.1242/dev.033076
[13] Sun Y H, Dong L, Zhang Y, et al. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biology, 2020, 21(1): 1-25.
doi: 10.1186/s13059-019-1906-x
[14] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136(4): 1457-1468.
pmid: 8013918
[15] Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121(1): 185-199.
pmid: 2563713
[16] Berke T G, Rocheford T R. Quantitative trait loci for tassel traits in maize. Crop Science, 1999, 39(5): 1439-1443.
doi: 10.2135/cropsci1999.3951439x
[17] Mickelson S M, Stuber C S, Senior L, et al. Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize. Crop Science, 2002, 42(6): 1902-1909.
doi: 10.2135/cropsci2002.1902
[18] Upadyayula N, Wassom J, Bohn M O, et al. Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture. Theoretical and Applied Genetics, 2006, 113(8): 1395-1407.
pmid: 17061102
[19] Chen Z L, Wang B B, Dong X M, et al. An ultra-high density Bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15: 433.
doi: 10.1186/1471-2164-15-433
[20] Upadyayula N, da Silva H S, Bohn M O, et al. Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theoretical and Applied Genetics, 2006, 112(4): 592-606.
pmid: 16395569
[21] Briggs W H, McMullen M D, Gaut B S, et al. Linkage mapping of domestication loci in a large maize teosinte backcross resource. Genetics, 2007, 177(3): 1915-1928.
doi: 10.1534/genetics.107.076497
[22] Brown P J, Upadyayula N, Mahone G S, et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genetics, 2011, 7(11): e1002383.
doi: 10.1371/journal.pgen.1002383
[23] Wu X, Li Y X, Shi Y S, et al. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnology Journal, 2016, 14(7): 1551-1562.
doi: 10.1111/pbi.2016.14.issue-7
[24] Flint-Garcia S A, Thornsberry J M, Buckler E S IV. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003, 54(1): 357-374.
doi: 10.1146/arplant.2003.54.issue-1
[25] Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014, 10(9): e1004573. DOI: 10.1371/journal.pgen.1004573.
doi: 10.1371/journal.pgen.1004573
[26] Xu G H, Wang X F, Huang C, et al. Complex genetic architecture underlies maize tassel domestication. New Phytologist, 2017, 214(2): 852-864.
doi: 10.1111/nph.2017.214.issue-2
[27] Wang B B, Lin Z C, Li X, et al. Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 2020, 52(6): 565-571.
doi: 10.1038/s41588-020-0616-3
[28] Chen Z L, Wang B B, Dong X M, et al. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15: 433.
doi: 10.1186/1471-2164-15-433
[29] Wang Y L, Chen J, Guan Z R, et al. Combination of multi-locus genome-wide association study and QTL mapping reveals genetic basis of tassel architecture in maize. Molecular Genetics and Genomics, 2019, 294(6): 1421-1440.
doi: 10.1007/s00438-019-01586-4
[30] Gage J L, White M R, Edwards J W, et al. Selection signatures underlying dramatic male inflorescence transformation during modern hybrid maize breeding. Genetics, 2018, 210(3): 1125-1138.
doi: 10.1534/genetics.118.301487
[31] Pan Q C, Xu Y C, Li K, et al. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology, 2017, 175(2): 858-873.
doi: 10.1104/pp.17.00709
[32] Yi Q, Liu Y H, Zhang X G, et al. Comparative mapping of quantitative trait loci for tassel-related traits of maize in F2:3 and RIL populations. Journal of Genetics, 2018, 97(1): 253-266.
doi: 10.1007/s12041-018-0908-x
[33] Yang W F, Zheng L Z, He Y, et al. Fine mapping and candidate gene prediction of a major quantitative trait locus for tassel branch number in maize. Gene, 2020, 757: 144928.
doi: 10.1016/j.gene.2020.144928
[34] 王迪, 李永祥, 王阳, 等. 控制玉米雄穗分枝数目和雄穗重的主效QTL的定位. 植物学报, 2011, 46(1): 11-20.
doi: 10.3724/SP.J.1259.2011.00011
Wang D, Li Y X, Wang Y, et al. Major quantitative trait loci analysis of tassel primary branch number and tassel weight in maize (Zea mays). Chinese Bulletin of Botany, 2011, 46(1): 11-20.
doi: 10.3724/SP.J.1259.2011.00011
[35] 王召辉. 玉米株型、穗部性状的QTL定位及分析. 重庆: 西南大学, 2011.
Wang Z H. QTL mapping and analysis for plant type and ear traits in maize. Chongqing: Southwest University, 2011.
[36] 张媛, 蒋锋, 刘鹏飞, 等. 甜玉米雄穗分枝数的QTL定位. 湖北农业科学, 2013, 52(15): 3492-3495.
Zhang Y, Jiang F, Liu P F, et al. QTL mapping for tassel primary branch number in sweet corn. Hubei Agricultural Sciences, 2013, 52(15): 3492-3495.
[37] 刘军霞, 何小娟, 刘婷婷. 不同环境下玉米雄穗分枝数和主轴长的QTL分析. 分子植物育种, 2018, 16(10): 3219-3226.
Liu J X, He X J, Liu T T. QTL analysis of tassel branch number and total tassel length in maize under different environments. Molecular Plant Breeding, 2018, 16(10): 3219-3226.
[38] 代资举, 王新涛, 杨青, 等. 玉米雄穗分枝数主效QTL定位及qTBN5近等基因系构建. 作物学报, 2018, 44(8): 1127-1135.
doi: 10.3724/SP.J.1006.2018.01127
Dai Z J, Wang X T, Yang Q, et al. Major quantitative trait loci mapping for tassel branch number and construction of qTBN5 Near-isogenic Lines in Maize (Zea mays L.). Acta Agronomica Sinica, 2018, 44(8): 1127-1135.
doi: 10.3724/SP.J.1006.2018.01127
[39] 贾波, 崔敏, 谢庆春, 等. 基于SNP标记的玉米雄穗主要性状QTL定位分析. 西南农业学报, 2019, 32(7): 1469-1473.
Jia B, Cui M, Xie Q C, et al. QTL analysis of tassel traits based on SNP markers in maize. Southwest China Journal of Agricultural Sciences, 2019, 32(7): 1469-1473.
[40] 田然, 张晓聪, 郑雷, 等. 玉米雄穗分枝数主效QTL qTBN7定位分析. 玉米科学, 2019, 27(4): 79-86.
Tian R, Zhang X C, Zheng L, et al. Positioning analysis of a major tassel branch number QTL qTBN7 in maize. Journal of Maize Sciences, 2019, 27(4): 79-86.
[41] Rice B R, Fernandes S B, Lipka A E. Multi-trait genome-wide association studies reveal loci associated with maize inflorescence and leaf architecture. Plant and Cell Physiology, 2020, 61(8): 1427-1437.
doi: 10.1093/pcp/pcaa039
[42] Xie Y N, Wang X Q, Ren X C, et al. A SNP-based high-density genetic map reveals reproducible QTLs for tassel-related traits in maize (Zea mays L.). Tropical Plant Biology, 2019, 12(4): 244-254.
doi: 10.1007/s12042-019-09227-1
[43] Liu X Y, Hao L Y, Kou S R, et al. High-density quantitative trait locus mapping revealed genetic architecture of leaf angle and tassel size in maize. Molecular Breeding, 2018, 39(1): 1-14.
doi: 10.1007/s11032-018-0907-x
[44] Chen Z J, Yang C, Tang D G, et al. Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. Journal of Integrative Agriculture, 2017, 16(7): 1432-1442.
doi: 10.1016/S2095-3119(16)61538-1
[45] Zhao H, Sun Z F, Wang J, et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics (Oxford, England), 2014, 30(7): 1006-1007.
doi: 10.1093/bioinformatics/btt730
[46] Bommert P, Je B I, Goldshmidt A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature, 2013, 502(7472): 555-558.
doi: 10.1038/nature12583
[47] Nardmann J, Werr W. The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Molecular Biology and Evolution, 2006, 23(12): 2492-2504.
pmid: 16987950
[48] Je B I, Gruel J, Lee Y K, et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nature Genetics, 2016, 48(7): 785-791.
doi: 10.1038/ng.3567
[49] Bommert P, Nagasawa N S, Jackson D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics, 2013, 45(3): 334-337.
doi: 10.1038/ng.2534 pmid: 23377180
[50] Taguchi-Shiobara F. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes & Development, 2001, 15(20): 2755-2766.
doi: 10.1101/gad.208501
[51] Bommert P, Lunde C N, Nardmann J, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development (Cambridge, England), 2005, 132(6): 1235-1245.
doi: 10.1242/dev.01671
[52] Pautler M, Eveland A L, LaRue T, et al. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. The Plant Cell, 2015, 27(1): 104-120.
doi: 10.1105/tpc.114.132506
[53] Skirpan A, Culler A H, Gallavotti A, et al. BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant & Cell Physiology, 2009, 50(3): 652-657.
[54] McSteen P, Hake S. Barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development (Cambridge, England), 2001, 128(15): 2881-2891.
doi: 10.1242/dev.128.15.2881
[55] Yao H, Skirpan A, Wardell B, et al. The barren stalk2 gene is required for axillary meristem development in maize. Molecular Plant, 2019, 12(3): 374-389.
doi: 10.1016/j.molp.2018.12.024
[56] Bortiri E, Chuck G, Vollbrecht E, et al. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. The Plant Cell, 2006, 18(3): 574-585.
doi: 10.1105/tpc.105.039032
[57] Gallavotti A, Yang Y, Schmidt R J, et al. The relationship between auxin transport and maize branching. Plant Physiology, 2008, 147(4): 1913-1923.
doi: 10.1104/pp.108.121541 pmid: 18550681
[58] Gallavotti A, Barazesh S, Malcomber S, et al. Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. PNAS, 2008, 105(39): 15196-15201.
doi: 10.1073/pnas.0805596105 pmid: 18799737
[59] Galli M, Liu Q J, Moss B L, et al. Auxin signaling modules regulate maize inflorescence architecture. PNAS, 2015, 112(43): 13372-13377.
doi: 10.1073/pnas.1516473112 pmid: 26464512
[60] Vollbrecht E, Springer P S, Goh L, et al. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436(7054): 1119-1126.
doi: 10.1038/nature03892
[61] Satoh-Nagasawa N, Nagasawa N, Malcomber S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature, 2006, 441(7090): 227-230.
doi: 10.1038/nature04725
[62] Phillips K A, Skirpan A L, Liu X, et al. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. The Plant Cell, 2011, 23(2): 550-566.
doi: 10.1105/tpc.110.075267
[63] Barazesh S, McSteen P. Barren inflorescence1 functions in organogenesis during vegetative and inflorescence development in maize. Genetics, 2008, 179(1): 389-401.
doi: 10.1534/genetics.107.084079 pmid: 18493061
[64] Chuck G S, Brown P J, Meeley R, et al. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. PNAS, 2014, 111(52): 18775-18780.
doi: 10.1073/pnas.1407401112
[65] Chuck G, Cigan A M, Saeteurn K, et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 2007, 39(4): 544-549.
doi: 10.1038/ng2001
[66] Walsh J, Freeling M. The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. The Plant Journal, 1999, 19(4): 489-495.
doi: 10.1046/j.1365-313X.1999.00541.x
[67] Du Y F, Liu L, Li M F, et al. UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice. New Phytologist, 2017, 214(2): 721-733.
doi: 10.1111/nph.2017.214.issue-2
[68] Chuck G, Muszynski M, Kellogg E, et al. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 2002, 298(5596): 1238-1241.
doi: 10.1126/science.1076920
[69] Thompson B E, Basham C, Hammond R, et al. The dicer-like1 homolog fuzzy tassel is required for the regulation of meristem determinacy in the inflorescence and vegetative growth in maize. The Plant Cell, 2014, 26(12): 4702-4717.
doi: 10.1105/tpc.114.132670 pmid: 25465405
[70] Chuck G, Meeley R, Irish E, et al. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics, 2007, 39(12): 1517-1521.
doi: 10.1038/ng.2007.20
[71] DeLong A, Calderon-Urrea A, Dellaporta S L. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell, 1993, 74(4): 757-768.
pmid: 8358795
[72] Acosta I F, Laparra H, Romero S P, et al. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science, 2009, 323(5911): 262-265.
doi: 10.1126/science.1164645 pmid: 19131630
[73] Luo H S, Meng D X, Liu H B, et al. Ectopic expression of the transcriptional regulator silky3 causes pleiotropic meristem and sex determination defects in maize inflorescences. The Plant Cell, 2020, 32(12): 3750-3773.
doi: 10.1105/tpc.20.00043
[74] Hartwig T, Chuck G S, Fujioka S, et al. Brassinosteroid control of sex determination in maize. PNAS, 2011, 108(49): 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275
[75] Bomblies K, Wang R L, Ambrose B A, et al. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development (Cambridge, England), 2003, 130(11): 2385-2395.
doi: 10.1242/dev.00457
[76] Danilevskaya O N, Meng X, Selinger D A, et al. Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiology, 2008, 147(4): 2054-2069.
doi: 10.1104/pp.107.115261 pmid: 18539775
[77] Gallavotti A, Long J A, Stanfield S, et al. The control of axillary meristem fate in the maize ramosa pathway. Development (Cambridge, England), 2010, 137(17): 2849-2856.
doi: 10.1242/dev.051748
[78] Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development (Cambridge, England), 2008, 135(18): 3013-3019.
doi: 10.1242/dev.024273
[79] Whipple C J, Hall D H, DeBlasio S, et al. A conserved mechanism of bract suppression in the grass family. The Plant Cell, 2010, 22(3): 565-578.
doi: 10.1105/tpc.109.073536
[80] Chuck G, Whipple C, Jackson D, et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development (Cambridge, England), 2010, 137(8): 1243-1250.
doi: 10.1242/dev.048348
[81] Chatterjee M, Tabi Z, Galli M, et al. The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility. The Plant Cell, 2014, 26(7): 2962-2977.
doi: 10.1105/tpc.114.125963 pmid: 25035400
[82] Leonard A, Holloway B, Guo M, et al. Tassel-less1 encodes a boron channel protein required for inflorescence development in maize. Plant & Cell Physiology, 2014, 55(6): 1044-1054.
[83] Bai F, Reinheimer R, Durantini D, et al. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. PNAS, 2012, 109(30): 12225-12230.
doi: 10.1073/pnas.1202439109
[84] Qin X E, Tian S K, Zhang W L, et al. QDtbn1, an F-box gene affecting maize tassel branch number by a dominant model. Plant Biotechnology Journal, 2021, 19(6): 1183-1194.
doi: 10.1111/pbi.v19.6
[85] Bolduc N, Yilmaz A, Mejia-Guerra M K, et al. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes & Development, 2012, 26(15): 1685-1690.
doi: 10.1101/gad.193433.112
[86] Clark S E, Williams R W, Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 1997, 89(4): 575-585.
pmid: 9160749
[87] Jeong S, Trotochaud A E, Clark S E. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. The Plant Cell, 1999, 11(10): 1925-1934.
doi: 10.1105/tpc.11.10.1925
[88] Hu C, Zhu Y F, Cui Y W, et al. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nature Plants, 2018, 4(4): 205-211.
doi: 10.1038/s41477-018-0123-z
[89] Müller R, Bleckmann A, Simon R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. The Plant Cell, 2008, 20(4): 934-946.
doi: 10.1105/tpc.107.057547
[90] Ogawa M, Shinohara H, Sakagami Y, et al. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 2008, 319(5861): 294.
doi: 10.1126/science.1150083 pmid: 18202283
[91] Ohyama K, Shinohara H, Ogawa-Ohnishi M, et al. A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nature Chemical Biology, 2009, 5(8): 578-580.
doi: 10.1038/nchembio.182
[92] Zhang D B, Yuan Z. Molecular control of grass inflorescence development. Annual Review of Plant Biology, 2014, 65: 553-578.
doi: 10.1146/arplant.2014.65.issue-1
[1] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[2] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[3] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[4] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[5] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.
[6] 谭彩霞, 张亚芳, 陈宗祥, 殷跃军, 纪雪梅, 杨勇, 潘学彪. 两个抗水稻纹枯病主效数量基因的鉴定[J]. 中国生物工程杂志, 2004, 24(4): 79-80.
[7] 顾军. 线形质粒[J]. 中国生物工程杂志, 1985, 5(4): 72-72.
[8] 李锦芳. 新的基因和明天的甜木薯[J]. 中国生物工程杂志, 1982, 2(1): 78-78.