Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (11): 32-39    DOI: 10.13523/j.cb.2106049
研究报告     
表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*
薛志勇,代红生,张显元,孙艳颖,黄志伟()
东华大学化学化工与生物工程学院 生态纺织教育部重点实验室 上海 201620
Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae
XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei()
Key Lab of Science & Technology of Eco-textile (Ministry of Education), College of Chemistry & Chemical Engineering and Biotechnology,Donghua University, Shanghai 201620, China
 全文: PDF(1422 KB)   HTML
摘要:

透明颤菌血红蛋白基因vgb在多种研究和工业发酵菌中异源表达很好的解决了高密度发酵中的溶氧率问题。酿酒酵母是经典的真核模型,且在发酵工业中具有重要的应用价值,但vgb在酿酒酵母中异源表达对细胞生长的影响并不清楚。以ADH1为启动子构建了含透明颤菌(Vistreoscilla)血红蛋白基因vgb的异源表达质粒YEplac195-ADH1pr-vgb,并转化至酿酒酵母BY4741。通过生长敏感性实验,发现在发酵碳源和非发酵碳源中,vgb的异源表达均抑制了菌株生长。接着,通过2',7'-二氯荧光黄双乙酸盐和PI染色和脂质过氧化产物检测分析,发现过表达vgb的酿酒酵母细胞中活性氧(ROS)的积累、细胞膜通透性改变以及脂质过氧化。结果表明,酿酒酵母中过表达vgb改变细胞的氧化状态促进活性氧的累积,氧化应激导致菌株的生长抑制。

关键词: 透明颤菌血红蛋白酿酒酵母生长抑制细胞过氧化    
Abstract:

Heterologous expression of Vitreoscilla hemoglobin gene vgb in a variety of research and industrial fermentation bacteria can solve the problem of dissolved oxygen rate in high-density fermentation. Saccharomyces cerevisiae is a classic eukaryotic model and has an important application value in the fermentation industry. However, the impact of vgb in Saccharomyces cerevisiae on cell growth is unclear. In this study, a heterologous expression plasmid YEplac195-ADH1pr-vgb containing Vistreoscilla hemoglobin gene vgb was constructed with Adh1 as promoter, and transformed into Saccharomyces cerevisiae BY4741. Growth sensitivity test showed that the heterologous expression of vgb inhibited the growth of the strain in both fermentation and non fermentation carbon sources. Then, we found the accumulation of reactive oxygen species (ROS), the change of membrane permeability and lipid peroxidation in S. cerevisiae cells overexpressing vgb by DCFH-DA and PI staining and lipid peroxidation products assay. The results showed that the overexpression of vgb changed the oxidation state in cells, promoted the accumulation of reactive oxygen (ROS), and oxidative stress caused the growth inhibition of the strain.

Key words: Vitreoscilla hemoglobin    Saccharomyces cerevisiae    Growth inhibition    Oxidative stress
收稿日期: 2021-06-28 出版日期: 2021-12-01
ZTFLH:  Q819  
基金资助: * 中央高校基本科研业务费专项资金(2232021G)
通讯作者: 黄志伟     E-mail: zhiweih@dhu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
薛志勇
代红生
张显元
孙艳颖
黄志伟

引用本文:

薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.

XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae. China Biotechnology, 2021, 41(11): 32-39.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106049        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I11/32

Primer Purpose Primer sequence Template
F1 vgb cloning AACTGCAGACCCTCATGTTAGACCAG pUC8:16
R1 GGGGTACCCAAGGCACACCTGAAGAC Process biochemistry 41 (2006)930-934
F2 ADH1 promoter ACGCCAAGCTTACCCTTTTTCCATTTGCCATC Genomic DNA
R2 GTCGACCTGCAGCATTGTATATGAGATAGTTGATTG
F3 vgb RT-PCR GATATGGGTCGCCAAGAAT Yeast cell with plasmids
R3 ATCTGCTTCCACTTGAATA
表1  用于构建重组质粒YEplac195-ADH1pr-vgb的PCR引物
图1  YEplac195-ADH1pr-vgb构建及在酿酒酵母细胞中的表达
图2  过表达vgb在发酵碳源条件下对细胞生长的影响
图3  过表达vgb在非发酵碳源条件下对酵母细胞生长的影响
图4  过表达vgb促进酵母细胞活性氧积累
图5  vgb过表达危害细胞膜的完整性和引起胞内脂质过氧化
[1] 秦华明, 梁世中, 周玲艳. 重组酵母菌的高密度发酵表达. 生命的化学, 2001, 21(5):439-441.
Qin H M, Liang S Z, Zhou L Y. High density fermentation expression of recombinant yeast. Chemistry of Life, 2001, 21(5):439-441.
[2] 陈洪章, 李佐虎. 酵母菌的高密度发酵. 工业微生物, 1998, 28(1):30-33.
Chen H Z, Li Z H. High density fermentation of yeast. Industrial Microbiology, 1998, 28(1):30-33.
[3] Wu W B, Guo X L, Zhang M L, et al. Enhancement of l-phenylalanine production in Escherichia coli by heterologous expression of Vitreoscilla hemoglobin. Biotechnology and Applied Biochemistry, 2018, 65(3):476-483.
doi: 10.1002/bab.2018.65.issue-3
[4] Bülow L, Holmberg N, Lilius G, et al. The metabolic effects of native and transgenic hemoglobins on plants. Trends in Biotechnology, 1999, 17(1):21-24.
pmid: 10098274
[5] Isarankura-Na-ayudhya C, Panpumthong P, Tangkosakul T, et al. Shedding light on the role of Vitreoscilla hemoglobin on cellular catabolic regulation by proteomic analysis. International Journal of Biological Sciences, 2008, 4(2):71-80.
pmid: 18345284
[6] Dikshit K L, Dikshit R P, Webster D A. Study of Vitreoscilla globin(vgb) gene expression and promoter activity in E. coli through transcriptional fusion. Nucleic Acids Research, 1990, 18(14):4149-4155.
pmid: 2198533
[7] Khosla C, Curtis J E, Bydalek P, et al. Expression of recombinant proteins in Escherichia coli using an oxygen-responsive promoter. Bio/ Technology, 1990, 8(6):554-558.
[8] Fang Z J, Kuang X, Zhang Y S, et al. A novel HAC1-based dual-luciferase reporter vector for detecting endoplasmic Reticulum stress and unfolded protein response in yeast Saccharomyces cerevisiae. Plasmid, 2015, 79:48-53.
doi: 10.1016/j.plasmid.2015.04.002
[9] Fu Z J, Lu H, Zhu Z Y, et al. Combination of baicalein and Amphotericin B accelerates Candida albicans apoptosis. Biological & Pharmaceutical Bulletin, 2011, 34(2):214-218.
[10] Huang Z W, Kuang X, Chen Z X, et al. Comparative studies of tri- and hexavalent chromium cytotoxicity and their effects on oxidative state of Saccharomyces cerevisiae cells. Current Microbiology, 2014, 68(4):448-456.
doi: 10.1007/s00284-013-0496-1
[11] Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochemical Medicine, 1976, 15(2):212-216.
pmid: 962904
[12] Chen W, Hughes D E, Bailey J E. Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. Biotechnology Progress, 1994, 10(3):308-313.
pmid: 7764938
[13] Liu M, Li S Q, Xie Y Z, et al. Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology, 2018, 102(3):1155-1165.
doi: 10.1007/s00253-017-8680-z
[14] Anand A, Duk B T, Singh S, et al. Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. Biochemical Journal, 2010, 426(3):271-280.
doi: 10.1042/BJ20091417
[15] Park K W, Kim K J, Howard A J, et al. Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. Journal of Biological Chemistry, 2002, 277(36):33334-33337.
doi: 10.1074/jbc.M203820200
[16] Ramandeep, Hwang K W, Raje M, et al. Vitreoscilla hemoglobin: intracellular localization and binding TO membranes. Journal of Biological Chemistry, 2001, 276(27):24781-24789.
pmid: 11331274
[17] Erenler S O, Gencer S, Geckil H, et al. Cloning and expression of the Vitreoscilla hemoglobin gene in Enterobacter aerogenes: effect on cell growth and oxygen uptake. Applied Biochemistry and Microbiology, 2004, 40(3):241-248.
doi: 10.1023/B:ABIM.0000025945.53332.74
[18] Wang X T, Ding Y T, Gao X Y, et al. Promotion of the growth and plant biomass degrading enzymes production in solid-state cultures of Lentinula edodes expressing Vitreoscilla hemoglobin gene. Journal of Biotechnology, 2019, 302:42-47.
doi: 10.1016/j.jbiotec.2019.06.301
[19] 唐辉桂, 黄火清, 罗会颖, 等. 利用透明颤菌血红蛋白在低氧条件下提高毕赤酵母中植酸酶的表达. 中国农业科技导报, 2008, 10(3):84-89.
Tang H G, Huang H Q, Luo H Y, et al. Expression of bacterial hemoglobin with a low O2-induced promoter improves recombinant phytase production in Pichia pastoris. Journal of Agricultural Science and Technology, 2008, 10(3):84-89.
[20] 汪小锋, 孙永川, 申旭光, 等. 毕赤酵母中表达透明颤菌血红蛋白提高重组脂肪酶的表达. 生物工程学报, 2011, 27(12):1755-1764.
Wang X F, Sun Y C, Shen X G, et al. Expression of Vitreoscilla hemoglobin improves recombinant lipase production in Pichia pastoris. Chinese Journal of Biotechnology, 2011, 27(12):1755-1764.
[21] Turanli-Yildiz B, Benbadis L, Alkim C, et al. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization. Journal of Bioscience and Bioengineering, 2017, 124(3):309-318.
doi: 10.1016/j.jbiosc.2017.04.012
[22] Bülow L, Holmberg N, Lilius G, et al. The metabolic effects of native and transgenic hemoglobins on plants. Trends in Biotechnology, 1999, 17(1):21-24.
pmid: 10098274
[23] Sánchez-Osorio I, Hernández-Martínez C A, Martínez-Antonio A. Quantitative modeling of the interplay between synthetic gene circuits and host physiology: experiments, results, and prospects. Current Opinion in Microbiology, 2020, 55:48-56.
doi: S1369-5274(20)30031-X pmid: 32220744
[24] 乔雪锋, 陆俊杰, 肖慈英, 等. 低氧诱导启动子PsADH2在毕赤酵母中的调控特性. 华东理工大学学报(自然科学版), 2013, 39(5):559-564, 577.
Qiao X F, Lu J J, Xiao C Y, et al. Regulation characteristics of hypoxia-induced PsADH2 promoter in Pichia pastoris. Journal of East China University of Science and Technology (Natural Science Edition), 2013, 39(5):559-564, 577.
[25] Martínez-Fernández J A, Bravo D, Peirotén Á, et al. Bile-induced promoters for gene expression in Lactobacillus strains. Applied Microbiology and Biotechnology, 2019, 103(9):3819-3827.
doi: 10.1007/s00253-019-09743-w pmid: 30887172
[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[3] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[4] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[5] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[6] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[7] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[8] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[9] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[10] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.
[11] 郗欣彤,毛绍名. 褐藻制备生物乙醇的生产优化研究 *[J]. 中国生物工程杂志, 2017, 37(12): 111-118.
[12] 张璟, 张文强, 秦慧民, 毛淑红, 薛家禄, 路福平. 胆固醇7,8位脱氢酶的表达及催化活性研究[J]. 中国生物工程杂志, 2017, 37(1): 21-26.
[13] 王利群, 鲁洪中, 储炬, 王永红. 不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响[J]. 中国生物工程杂志, 2017, 37(1): 27-37.
[14] 梅雪昂, 陈艳, 王瑞钊, 肖文海, 王颖, 李霞, 元英进. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72.
[15] 王瑞钊, 潘才惠, 王颖, 肖文海, 元英进. 高产β-胡萝卜素酿酒酵母菌株的设计与构建[J]. 中国生物工程杂志, 2016, 36(7): 83-91.