Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (11): 82-88    DOI: 10.13523/j.cb.2106045
综述     
lncRNA在动物脂肪沉积中的研究进展*
刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳()
中国农业科学院北京畜牧兽医研究所 北京 100193
Research Progress of lncRNA in Animal Fat Deposition
LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang()
Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
 全文: PDF(502 KB)   HTML
摘要:

长链非编码RNA(long non-coding RNA,lncRNA),是一种长度大于200个核苷酸的调控性非编码RNA,能在转录水平、转录后水平及表观遗传水平等多个层面影响基因的表达。脂肪生成是一个复杂而有序的过程。大量研究表明,lncRNA在脂肪生成过程中扮演着重要角色,它可以影响脂质代谢及成脂分化等多种生物过程,从而间接影响肉品质。这对于提高畜禽肉品质、避免养殖业饲料过多转化成脂肪所导致的浪费以及对预防和治疗与脂肪代谢相关的疾病都具有重要意义。对lncRNA的基本特征、在动物脂肪沉积中的作用进展进行了综述,以期为培育优质畜禽,预防和治疗与脂肪代谢相关的疾病提供理论依据。

关键词: 长链非编码RNA脂肪分化脂代谢    
Abstract:

Long non-coding RNA (lncRNA) is a regulatory non-coding RNA with a length of more than 200 nucleotides, which can be used at the transcription level, post-transcriptional level, and epigenetic level to affect gene expression. Lipogenesis is a complex and orderly process. A large number of studies have shown that lncRNA plays an important role in the process of adipogenesis. It can affect various biological processes such as lipid metabolism and adipogenic differentiation, thereby indirectly affecting meat quality. This is of great significance for improving the quality of livestock and poultry meat, avoiding the waste caused by excessive conversion of feed into fat in the breeding industry, and preventing and treating diseases related to fat metabolism. This article reviews the basic characteristics of lncRNA and the progress of its role in animal fat deposition, in order to provide a theoretical basis for cultivating high-quality livestock and poultry, preventing and treating diseases related to fat metabolism.

Key words: lncRNA    Adipose    Differentiation    Lipid metabolism
收稿日期: 2021-06-24 出版日期: 2021-12-01
ZTFLH:  Q819  
基金资助: * 国家转基因生物新品种培育重大专项(2009ZXZ08008-004);国家转基因生物新品种培育重大专项(2008ZX08008-003);农业科技创新工程(ASTIP-IAS05);中央级公益性科研院所基本科研业务费专项(Y2016JC22);中央级公益性科研院所基本科研业务费专项(Y2018PT68)
通讯作者: 苗向阳     E-mail: miaoxy32@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘天义
冯卉
SALSABEELYousuf
解领丽
苗向阳

引用本文:

刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.

LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition. China Biotechnology, 2021, 41(11): 82-88.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106045        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I11/82

图1  RNA的分类
图2  MSCs成脂分化过程
[1] Losko M, Dolicka D, Pydyn N, et al. Integrative genomics reveal a role for MCPIP1 in adipogenesis and adipocyte metabolism. Cellular and Molecular Life Sciences, 2020, 77(23):4899-4919.
doi: 10.1007/s00018-019-03434-5
[2] Khalifa O, Errafii K, Al-Akl N S, et al. Noncoding RNAs in nonalcoholic fatty liver disease: potential diagnosis and prognosis biomarkers. Disease Markers, 2020, 2020:8822859.
[3] Hu Y M, Lv J, Fang Y, et al. Crtc1 deficiency causes obesity potentially via regulating PPARγ pathway in white adipose. Frontiers in Cell and Developmental Biology, 2021, 9:602529.
doi: 10.3389/fcell.2021.602529
[4] Shu L Y, Hou G S, Zhao H, et al. Resveratrol improves high-fat diet-induced insulin resistance in mice by downregulating the lncRNA NONMMUT008655.2. American Journal of Translational Research, 2020, 12(1):1-18.
[5] Squillaro T, Peluso G, Galderisi U, et al. Long non-coding RNAs in regulation of adipogenesis and adipose tissue function. eLife, 2020, 9:59053. DOI: 10.7554/elife.59053.
doi: 10.7554/elife.59053
[6] Ding C M, Lim Y C, Chia S Y, et al. De novo reconstruction of human adipose transcriptome reveals conserved lncRNAs as regulators of brown adipogenesis. Nature Communications, 2018, 9(1):1329.
doi: 10.1038/s41467-018-03754-3
[7] Lander E S, Linton L M, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822):860-921.
doi: 10.1038/35057062
[8] Jathar S, Kumar V, Srivastava J, et al. Technological developments in lncRNA biology. Advances in Experimental Medicine and Biology, 2017, 1008:283-323.
[9] Dahariya S, Paddibhatla I, Kumar S, et al. Long non-coding RNA: classification, biogenesis and functions in blood cells. Molecular Immunology, 2019, 112:82-92.
doi: S0161-5890(19)30061-6 pmid: 31079005
[10] Zhang P J, Wu W Y, Chen Q, et al. Non-coding RNAs and their integrated networks. Journal of Integrative Bioinformatics, 2019, 16(3). DOI: 10.1515/jib-2019-0027.
doi: 10.1515/jib-2019-0027
[11] Charles Richard J L, Eichhorn P J A. Platforms for investigating LncRNA functions. SLAS Technology: Translating Life Sciences Innovation, 2018, 23(6):493-506.
doi: 10.1177/2472630318780639
[12] Brandão B B, Poojari A, Rabiee A Thermogenic fat: development, physiological function, and therapeutic potential. Int J Mol Sci, 2021, 22(11):5906.
doi: 10.3390/ijms22115906
[13] Oguri Y, Shinoda K, Kim H, et al. CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling. Cell, 2020, 182(3): 563-577.e20.
[14] Carson C, Macias-Velasco J F, Gunawardana S, et al. Brown adipose expansion and remission of glycemic dysfunction in obese SM/J mice. Cell Reports, 2020, 33(1):108237.
doi: 10.1016/j.celrep.2020.108237 pmid: 33027654
[15] Montanari T, Pošćić N, Colitti M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obesity Reviews, 2017, 18(5):495-513.
doi: 10.1111/obr.12520 pmid: 28187240
[16] Fan L Y, Xu H Y, Li D, et al. A novel long noncoding RNA, AC092834.1, regulates the adipogenic differentiation of human adipose-derived mesenchymal stem cells via the DKK1/Wnt/β-catenin signaling pathway. Biochemical and Biophysical Research Communications, 2020, 525(3):747-754.
doi: 10.1016/j.bbrc.2020.02.140
[17] Almalki S G, Agrawal D K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation, 2016, 92(1-2):41-51.
doi: 10.1016/j.diff.2016.02.005 pmid: 27012163
[18] Guru A, Issac P K, Velayutham M, et al. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Molecular Biology Reports, 2021, 48(1):743-761.
doi: 10.1007/s11033-020-06036-8
[19] Hsu C L, Lin Y J, Ho C T, et al. Inhibitory effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells. Food & Function, 2012, 3(1):49-57.
[20] Bagchi D P, Nishii A, Li Z R, et al. Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Molecular Metabolism, 2020, 42:101078.
doi: 10.1016/j.molmet.2020.101078
[21] Rahman M S, Kim Y S. PINK1-PRKN mitophagy suppression by mangiferin promotes a brown-fat-phenotype via PKA-p38 MAPK signalling in murine C3H10T1/2 mesenchymal stem cells. Metabolism, 2020, 107:154228.
doi: 10.1016/j.metabol.2020.154228
[22] Lanz R B, Razani B, Goldberg A D, et al. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). PNAS, 2002, 99(25):16081-16086.
doi: 10.1073/pnas.192571399
[23] Xu B, Gerin I, Miao H Z, et al. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS One, 2010, 5(12):e14199. DOI: 10.1371/journal.pone.0014199.
doi: 10.1371/journal.pone.0014199
[24] Wei N, Wang Y, Xu R X, et al. PU.1 antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Animal Genetics, 2015, 46(2):133-140.
doi: 10.1111/age.12275 pmid: 25691151
[25] Pang W J, Lin L G, Xiong Y, et al. Knockdown of PU.1 AS lncRNA inhibits adipogenesis through enhancing PU.1 mRNA translation. Journal of Cellular Biochemistry, 2013, 114(11):2500-2512.
doi: 10.1002/jcb.v114.11
[26] Sun Y M, Cai R, Wang Y Q, et al. A newly identified LncRNA LncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals, 2020, 10(6):926.
doi: 10.3390/ani10060926
[27] Huang J P, Zheng Q Z, Wang S Z, et al. High-throughput RNA sequencing reveals NDUFC2-AS lncRNA promotes adipogenic differentiation in Chinese buffalo (Bubalus bubalis L.). Genes, 2019, 10(9):689.
doi: 10.3390/genes10090689
[28] Xiao T F, Liu L H, Li H L, et al. Long noncoding RNA ADINR regulates adipogenesis by transcriptionally activating C/EBPα. Stem Cell Reports, 2015, 5(5):856-865.
doi: 10.1016/j.stemcr.2015.09.007
[29] Zhu R R, Feng X, Wei Y T, et al. lncSAMM50 enhances adipogenic differentiation of buffalo adipocytes with no effect on its host gene. Frontiers in Genetics, 2021, 12:626158.
doi: 10.3389/fgene.2021.626158
[30] Li H, Feng J C, Li G L, et al. The effect of lnc-RAP3 on 3T3-L1 preadipocyte differentiation in mouse. Hereditas, 2018, 40(9):758-766.
[31] Chen J, Liu Y, Lu S, et al. The role and possible mechanism of lncRNA U90926 in modulating 3T3-L1 preadipocyte differentiation. International Journal of Obesity, 2017, 41(2):299-308.
doi: 10.1038/ijo.2016.189 pmid: 27780975
[32] Yu X H, Deng W Y, Chen J J, et al. LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a CeRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death & Disease, 2020, 11:1043.
[33] Li M, Xie Z Y, Wang P, et al. The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a CeRNA. Cell Death & Disease, 2018, 9:554.
[34] Gao A B, Cayabyab F S, Chen X, et al. Implications of sortilin in lipid metabolism and lipid disorder diseases. DNA and Cell Biology, 2017, 36(12):1050-1061.
doi: 10.1089/dna.2017.3853
[35] Kersten S. Physiological regulation of lipoprotein lipase. Biochimica et Biophysica Acta, 2014, 1841(7):919-933.
doi: 10.1016/j.bbalip.2014.03.013 pmid: 24721265
[36] Baggio G, Manzato E, Gabelli C, et al. Apolipoprotein C-II deficiency syndrome. Clinical features, lipoprotein characterization, lipase activity, and correction of hypertriglyceridemia after apolipoprotein C-II administration in two affected patients. Journal of Clinical Investigation, 1986, 77(2):520-527.
pmid: 3944267
[37] Li P, Ruan X B, Yang L, et al. A liver-enriched long non-coding RNA, lncLSTR, regulates systemic lipid metabolism in mice. Cell Metabolism, 2015, 21(3):455-467.
doi: 10.1016/j.cmet.2015.02.004
[38] Hennessy E J, van Solingen C, Scacalossi K R, et al. The long noncoding RNA CHROME regulates cholesterol homeostasis in Primates. Nature Metabolism, 2019, 1(1):98-110.
doi: 10.1038/s42255-018-0004-9
[39] Ha E E, van Camp A G, Bauer R C. Genetics-driven discovery of novel regulators of lipid metabolism. Current Opinion in Lipidology, 2019, 30(3):157-164.
doi: 10.1097/MOL.0000000000000605
[40] Sallam T, Jones M C, Gilliland T, et al. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis. Nature, 2016, 534(7605):124-128.
doi: 10.1038/nature17674
[41] Li M X, Sun X M, Cai H F, et al. Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochimica et Biophysica Acta, 2016, 1859(7):871-882.
[42] Jiang R, Li H, Huang Y Z, et al. Transcriptome profiling of lncRNA related to fat tissues of Qinchuan cattle. Gene, 2020, 742:144587.
doi: S0378-1119(20)30256-0 pmid: 32179170
[43] Zhang S H, Kang Z H, Sun X M, et al. Novel lncRNA lncFAM200B: molecular characteristics and effects of genetic variants on promoter activity and cattle body measurement traits. Frontiers in Genetics, 2019, 10:968.
doi: 10.3389/fgene.2019.00968
[44] Zhang S H, Kang Z H, Cai H F, et al. Identification of novel alternative splicing of bovine lncRNA lncFAM200B and its effects on preadipocyte proliferation. Journal of Cellular Physiology, 2021, 236(1):601-611.
doi: 10.1002/jcp.v236.1
[45] Ma L, Zhang M, Jin Y Y, et al. Comparative transcriptome profiling of mRNA and lncRNA related to tail adipose tissues of sheep. Frontiers in Genetics, 2018, 9:365.
doi: 10.3389/fgene.2018.00365
[46] Han F H, Li J, Zhao R R, et al. Identification and co-expression analysis of long noncoding RNAs and mRNAs involved in the deposition of intramuscular fat in Aohan fine-wool sheep. BMC Genomics, 2021, 22(1):98.
doi: 10.1186/s12864-021-07385-9
[47] Huang W L, Zhang X X, Li A, et al. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds. Oncotarget, 2017, 8(50):87539-87553.
doi: 10.18632/oncotarget.v8i50
[48] Huang W L, Zhang X X, Li A, et al. Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds. Cellular Physiology and Biochemistry, 2018, 50(6):2406-2422.
doi: 10.1159/000495101
[49] Wang J, Chen M Y, Chen J F, et al. LncRNA IMFlnc1 promotes porcine intramuscular adipocyte adipogenesis by sponging miR-199a-5p to up-regulate CAV-1. BMC Molecular and Cell Biology, 2020, 21(1):77.
doi: 10.1186/s12860-020-00324-8
[50] Liu X, Liu K Q, Shan B S, et al. A genome-wide landscape of mRNAs, lncRNAs, and circRNAs during subcutaneous adipogenesis in pigs. Journal of Animal Science and Biotechnology, 2018, 9:76.
doi: 10.1186/s40104-018-0292-7
[1] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[2] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[3] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[4] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[5] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[6] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[7] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[8] 吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.
[9] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[10] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[11] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[12] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[13] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[14] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.
[15] 林海蛟,张继福,张云,孙爱君,胡云峰. 添加剂对大孔吸附树脂固定化脂肪酶的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 38-51.