Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (12): 61-73    DOI: 10.13523/j.cb.2111006
玉米生物育种基础研究与关键技术专辑     
玉米株高和穗位高的遗传基础与分子机制*
马雅杰1,2,高悦欣1,2,李依萍1,2,龙艳1,2,3,董振营1,2,**(),万向元1,2,3,**()
1 北京科技大学生物与农业研究中心 化学与生物工程学院 顺德研究生院 北京 100083
2 北京中智生物农业国际研究院 北京 100192
3 北京首佳利华科技有限公司 主要作物生物育种北京市工程实验室 生物育种北京市国际科技合作基地 北京 100192
Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height
MA Ya-jie1,2,GAO Yue-xin1,2,LI Yi-ping1,2,LONG Yan1,2,3,DONG Zhen-ying1,2,**(),WAN Xiang-yuan1,2,3,**()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
 全文: PDF(1402 KB)   HTML
摘要:

株高和穗位高是玉米重要育种性状,直接影响植株的养分利用效率及抗倒伏性,进而影响玉米产量。玉米株高和穗位高属于典型数量性状,目前通过数量性状位点(quantitative trait loci mapping,QTL)定位和全基因组关联分析(genome-wide association study, GWAS)等方法已挖掘到较多相关遗传位点,通过QTL精细定位及利用突变体克隆了一些调控株高和穗位高关键基因。但是由于各研究组所利用的群体类型和大小、标记类型和密度以及统计方法不同,所鉴定QTL差异较大,单个研究难以揭示玉米株高和穗位高遗传结构。早期QTL定位的结果多以遗传距离来展示,不同时期GWAS研究所使用参考基因组版本不同,这进一步增加了借鉴和利用前人研究结果的难度。首次将目前已鉴定株高和穗位高遗传定位信息统一锚定至玉米自交系B73参考基因组V4版本,构建了株高和穗位高性状定位的一致性图谱,并鉴定出可被多个独立研究定位的热点区间。进一步对已克隆玉米株高和穗位高调控基因进行总结与分类,揭示株高和穗位高性状调控机制,对深度解析株高和穗位高遗传结构、指导基因克隆和利用分子标记辅助选择优化玉米株高和穗位高性状均具有重要意义。

关键词: 玉米株高穗位高QTL定位全基因组关联分析    
Abstract:

Plant height and ear height are important agronomic traits of maize, which directly affect the nutrient utilization efficiency and lodging resistance of the plant, and ultimately affect the yield of maize. Plant height and ear height are typical quantitative traits, and quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) have been used to mine the related genetic loci. Some key genes regulating plant height and ear height were cloned by fine-mapping or by using mutants. However, due to the differences in type and size of mapping populations, type and density of the markers and statistical methods used by different research groups, the identified QTL was divergent significantly, and it was difficult to reveal the genetic structure of plant height and ear height of maize by single study. The identified QTLs were mainly based on genetic maps at early stages, and the versions of maize reference genome were updated several times, which hampered the efficient utilization of previously identified QTLs. Here, the mapping information of plant height and ear height was normalized and integrated into the V4 version of the maize inbred line B73 reference genome, and a consistent physical map for plant height and ear height was constructed. Furthermore, the mapping hotspots of plant height and ear height were identified by combining the results from independent studies. The cloned genes regulating both traits were also summarized. This study is of great significance for the in-depth dissection of the genetic structure of plant height and ear height, as well as for aiding gene cloning and marker-assisted selection in molecular breeding.

Key words: Maize    Plant height    Ear height    QTL mapping    Genome-wide association study
收稿日期: 2021-11-01 出版日期: 2022-01-13
ZTFLH:  Q819  
基金资助: * 中央高校基本科研业务费专项资金(06500060);国家“万人计划”科技创新领军人才特殊支持经费(201608)
通讯作者: 董振营,万向元     E-mail: zydong@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马雅杰
高悦欣
李依萍
龙艳
董振营
万向元

引用本文:

马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.

MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height. China Biotechnology, 2021, 41(12): 61-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2111006        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I12/61

图1  株高和穗位高性状定位QTL及显著关联SNP染色体分布图
图2  株高和穗位高性状显著关联SNP及QTL热点区间染色体分布图
基因名 基因ID号 位置 /bp 作用机制 参考文献
CT2 Zm00001d027886 Chr1: 16721214~16732176 CLV-WUS途径 [12]
ZmRPH1* Zm00001d028073 Chr1: 21988680~22008381 微管活动 [27]
RS2 Zm00001d030737 Chr1: 156874430~156878542 叶片发育 [54]
BR2* Zm00001d031871 Chr1: 204746911~204757135 auxin转运 [20]
AN1 Zm00001d032961 Chr1: 244857295~244868917 GA生物合成 [71]
BRD1 Zm00001d033180 Chr1: 253160991~253168253 BR生物合成 [72]
RTH1 Zm00001d033303 Chr1: 258162682~258179005 玉米根毛极性生长 [32]
D8 Zm00001d033680 Chr1: 270916585~270921477 GA信号转导 [73]
KN1 Zm00001d033859 Chr1: 276071835~276082742 GA生物合成 [74]
VP8 Zm00001d034383 Chr1: 291470941~291482373 调控分生组织发育 [75]
ZmWUS1 Zm00001d001948 Chr2: 3415296~3419504 调控分生组织发育 [76]
ZmGA3ox2* Zm00001d039634 Chr3: 9744156~9749561 GA生物合成 [77]
NA1 Zm00001d042843 Chr3: 181819965~181824489 BR生物合成 [17]
CCD8* Zm00001d043442 Chr3: 200057508~200064029 SL生物合成 [21]
D9 Zm00001d013465 Chr5: 12226829~12231706 GA信号转导 [78]
TD1 Zm00001eb228140 Chr5: 63455339~63461620 CLV-WUS途径 [79]
NA2 Zm00001d014887 Chr5: 67024671~67031523 BR生物合成 [80]
SXD1 Zm00001d015985 Chr5: 136804208~136823694 蔗糖输出 [29]
BV1 Zm00001d016486 Chr5: 164497866~164513396 auxin信号转导 [81]
TAN1 Zm00001d038060 Chr6: 146618427~146623046 微管活动 [24]
DIL1 Zm00001d038087 Chr6: 147377664~147387225 转录因子调控 [31]
VT2 Zm00001d008700 Chr8: 17393223~17400365 auxin生物合成 [82]
CLT1 Zm00001d011611 Chr8: 155858695~155868259 微管活动 [25]
BRI1a Zm00001d011721 Chr8: 159897928~159904296 BR信号转导 [83]
ELM1 Zm00001d011876 Chr8: 163612740~163619786 光敏色素合成 [30]
ZmPIN1a* Zm00001d044812 Chr9: 3290263~3296559 auxin转运 [84]
D3 Zm00001d045563 Chr9: 26820540~26827180 GA生物合成 [85]
CR4 Zm00001d023425 Chr10: 5234083~5239788 激酶调控 [70]
表1  已克隆株高和穗位高性状调控基因总结
性状 染色体 QTL热点区间/Mb* SNP热点区间/Mb* 热点区间内基因
PH 1 16.560~23.961 (3), 156.876~162.524 (3),162.524~166.195 (4), 166.195~171.401 (3),197.053~204.150 (3) 0.003~9.158 (40), 181.954~186.084 (11),192.893~202.158(13), 208.076~214.592 (12), 219.866~220.401 (5),254.195~264.696 (9), 281.131~284.691 (7) CT2, ZmRPH1, RS2, RTH1
2 13.900~20.399 (4), 181.460~194.070 (3),198.195~207.289 (3) 0.016~16.081 (29), 180.734~184.885 (6),207.979~214.232 (6), 237.954~244.359 (12) ZmWUS1
3 144.117~153.034 (3), 170.542~181.952 (4),181.952~183.394 (3), 217.222~224.598 (4) 0.038~3.619 (6), 9.229~19.846 (9),136.381~140.756 (7), 156.227~175.346 (24) NA1,ZmGA3ox2
4 204.210~237.006 (3) 0.115~1.713 (9), 7.408~12.177 (6),118.311~123.427 (6), 183.013~187.574 (6),200.548~204.207 (6), 236.483~245.430 (9)
5 8.848~13.389 (3), 14.5882~19.174 (3),66.605~71.974 (3), 131.470~155.423 (3) 1.847~6.709 (10), 26.762~30.721 (7),207.482~217.895 (10), 218.489~221.975 (5) D9, NA2, SXD1
6 0.115~21.273 (57), 75.859~79.979 (5),84.659~89.402 (6), 113.745~122.337 (13),160.902~166.929 (11)
7 11.076~14.311 (3) 141.852~146.463 (7)
8 102.416~113.493 (3) 95.738~98.055 (5), 115.742~121.755 (6),131.441~138.666 (15), 142.471~145.827 (5),160.393~177.522 (18) ELM1
9 23.112~33.706 (4), 33.706~38.811 (5),38.811~68.852 (4), 68.852~99.492 (3) 10.911~15.811 (10), 141.541~145.101 (17),151.214~157.632 (11) D3
10 4.510~6.071 (3) 0.063~6.833 (20), 13.457~19.812 (7),31.828~32.011 (6), 62.317~68.225 (22),128.650~138.644 (17), 146.947~149.657 (6) CR4
EH 1 90.149~93.194 (3), 93.194~97.377 (4),97.377~131.222 (3), 131.222~148.194 (4),148.194~150.484 (3), 184.878~190.229 (3) 4.375~8.676 (4), 206.424~211.253 (4)
2 15.676~23.828 (4) 235.926~244.092 (10)
3 42.869~47.294 (3), 198.944~201.134 (3),201.134~203.609 (5), 203.609~205.193 (4),205.193~206.066 (3), 206.066~214.572 (5),217.070~224.597 (4) CCD8
5 142.584~154.201 (3), 154.201~172.796 (4),172.796~175.060 (3), 176.928~178.637 (3),180.252~196.012 (3) 214.475~218.657 (5)
7 119.718~128.801 (3), 132.787~134.113 (3)
8 123.813~137.740 (3)
9 15.036~23.111 (4), 23.111~68.851 (3),68.851~94.280 (4), 94.280~121.461 (3) 142.109~144.964 (17)
10 79.520~88.718 (3), 88.718~94.914 (4),103.654~109.141 (4)
表S1  株高和穗位高QTL及SNP热点区间汇总
[1] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annual Review of Plant Biology, 2018, 69: 437-468.
doi: 10.1146/arplant.2018.69.issue-1
[2] Prasanna B M. Diversity in global maize germplasm: Characterization and utilization. Journal of Biosciences, 2012, 37(5): 843-855.
pmid: 23107920
[3] 李志敏. 利用相关群体对玉米生育期和株型及产量相关性状QTL分析. 郑州: 河南农业大学, 2011.
Li Z M. QTL mapping for flowering time, plant-type and yield components using two related populations in maize. Zhengzhou: Henan Agricultural University, 2011.
[4] 崔爱民, 张久刚, 张虎, 等. 我国玉米生产现状及发展变革. 中国农业科技导报, 2020, 22(7): 10-19.
Cui A M, Zhang J G, Zhang H, et al. Preliminary exploration on current situation and development of maize production in China. Journal of Agricultural Science and Technology, 2020, 22(7): 10-19.
[5] Khush G S. Green revolution: the way forward. Nature Reviews Genetics, 2001, 2(10): 815-822.
pmid: 11584298
[6] Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17(3): 385-403.
doi: 10.1007/BF00056241
[7] Salas Fernandez M G, Becraft P W, Yin Y H, et al. From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science, 2009, 14(8): 454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467
[8] Tang J H, Teng W T, Yan J B, et al. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007, 155(1-2): 117-124.
doi: 10.1007/s10681-006-9312-3
[9] Weng J F, Xie C X, Hao Z F, et al. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One, 2011, 6(12): e29229. DOI: 10.1371/journal.pone.0029229.
doi: 10.1371/journal.pone.0029229
[10] Leiboff S, Li X R, Hu H C, et al. Genetic control of morphometric diversity in the maize shoot apical meristem. Nature Communications, 2015, 6: 8974.
doi: 10.1038/ncomms9974 pmid: 26584889
[11] Somssich M, Je B I, Simon R, et al. CLAVATA-WUSCHEL signaling in the shoot meristem. Development (Cambridge, England), 2016, 143(18): 3238-3248.
doi: 10.1242/dev.133645
[12] Bommert P, Je B I, Goldshmidt A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature, 2013, 502(7472): 555-558.
doi: 10.1038/nature12583
[13] Somerville C. Cellulose synthesis in higher plants. Annual Review of Cell and Developmental Biology, 2006, 22(1): 53-78.
doi: 10.1146/cellbio.2006.22.issue-1
[14] 张向歌. 玉米矮化基因d2014的克隆及其调控节间伸长的机制解析. 雅安: 四川农业大学, 2018.
Zhang X G. Cloning of maize dwarf gene d2014 and its mechanism of regulating internode elongation. Yaan: Sichuan Agricultural University, 2018.
[15] Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis. The Plant Cell, 1995, 7(8): 1307-1317.
[16] Huang D B, Wang S G, Zhang B C, et al. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. The Plant Cell, 2015, 27(6): 1681-1696.
doi: 10.1105/tpc.15.00015
[17] Hartwig T, Chuck G S, Fujioka S, et al. Brassinosteroid control of sex determination in maize. PNAS, 2011, 108(49): 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275
[18] Zhiponova M K, Vanhoutte I, Boudolf V, et al. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. The New Phytologist, 2013, 197(2): 490-502.
doi: 10.1111/nph.2012.197.issue-2
[19] Schenck D, Christian M, Jones A, et al. Rapid auxin-induced cell expansion and gene expression: a four-decade-old question revisited. Plant Physiology, 2010, 152(3): 1183-1185.
doi: 10.1104/pp.109.149591 pmid: 20071604
[20] Xing A Q, Gao Y F, Ye L F, et al. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. Journal of Experimental Botany, 2015, 66(13): 3791-3802.
doi: 10.1093/jxb/erv182
[21] Guan J C, Koch K E, Suzuki M, et al. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology, 2012, 160(3): 1303-1317.
doi: 10.1104/pp.112.204503
[22] Beveridge C A, Dun E A, Rameau C. Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiology, 2009, 151(3): 985-990.
doi: 10.1104/pp.109.143909
[23] Dun E A, de Saint Germain A, Rameau C, et al. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiology, 2012, 158(1): 487-498.
doi: 10.1104/pp.111.186783
[24] Cleary A L, Smith L G. The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. The Plant Cell, 1998, 10(11): 1875-1888.
doi: 10.1105/tpc.10.11.1875
[25] Lau K H. Co-orthologs of KATANIN1 impact plant morphology and show differential evolution in maize. The United States: Purdue University, 2016.
[26] Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. International Review of Cell and Molecular Biology, 2014, 312: 1-52.
[27] Li W, Ge F H, Qiang Z Q, et al. Maize ZmRPH1 encodes a microtubule-associated protein that controls plant and ear height. Plant Biotechnology Journal, 2020, 18(6): 1345-1347.
doi: 10.1111/pbi.v18.6
[28] Provencher L M, Miao L, Sinha N, et al. Sucrose export defective1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. The Plant Cell, 2001, 13(5): 1127-1141.
doi: 10.1105/tpc.13.5.1127
[29] Russin W A, Evert R F, Vanderveer P J, et al. Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. The Plant Cell, 1996, 8(4): 645-658.
pmid: 12239395
[30] Sawers R J H, Linley P J, Farmer P R, et al. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiology, 2002, 130(1): 155-163.
doi: 10.1104/pp.006411
[31] Jiang F K, Guo M, Yang F, et al. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One, 2012, 7(5): e37040.
doi: 10.1371/journal.pone.0037040
[32] Wen T J, Hochholdinger F, Sauer M, et al. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiology, 2005, 138(3): 1637-1643.
doi: 10.1104/pp.105.062174
[33] Beavis W D, Grant D, Albertsen M, et al. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theoretical and Applied Genetics, 1991, 83(2): 141-145.
doi: 10.1007/BF00226242 pmid: 24202349
[34] Yan J B, Tang H, Huang Y Q, et al. Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chinese Science Bulletin, 2003, 48(23): 2601-2607.
doi: 10.1360/03wc0044
[35] Pan Q C, Xu Y C, Li K, et al. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology, 2017, 175(2): 858-873.
doi: 10.1104/pp.17.00709
[36] Bai W, Zhang H, Zhang Z, et al. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breeding, 2009. DOI: 10.1111/j.1439-0523.2009.01709.x.
doi: 10.1111/j.1439-0523.2009.01709.x
[37] Zhu W H, Zhao Y K, Liu J B, et al. QTL mapping analysis of maize plant type based on SNP molecular marker. Cellular and Molecular Biology (Noisy Le Grand, France), 2019, 65(2): 18-27.
[38] Park K J, Sa K J, Kim B W, et al. Genetic mapping and QTL analysis for yield and agronomic traits with an F2: 3 population derived from a waxy corn × sweet corn cross. Genes & Genomics, 2014, 36(2): 179-189.
[39] Tang Z X, Yang Z F, Hu Z Q, et al. Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize. Molecular Breeding, 2013, 31(1): 1-14.
doi: 10.1007/s11032-012-9762-3
[40] Choi J K, Sa K J, Park D H, et al. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers. Genes & Genomics, 2019, 41(6): 667-678.
[41] Li X P, Zhou Z J, Ding J Q, et al. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Frontiers in Plant Science, 2016, 7: 833.
[42] Cai H G, Chu Q, Gu R L, et al. Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breeding, 2012, 131(4): 502-510.
doi: 10.1111/pbr.2012.131.issue-4
[43] Wang B B, Liu H, Liu Z P, et al. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biology, 2018, 18(1): 17.
doi: 10.1186/s12870-018-1233-5
[44] Salvi S, Corneti S, Bellotti M, et al. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biology, 2011, 11: 4.
doi: 10.1186/1471-2229-11-4
[45] Wei M, Fu J, Li X, et al. Influence of dent corn genetic backgrounds on QTL detection for plant-height traits and their relationships in high-oil maize. Journal of Applied Genetics, 2009, 50(3): 225-234.
doi: 10.1007/BF03195676 pmid: 19638677
[46] Lima M D L A, Souza C L, Bento D A V, et al. Mapping QTL for grain yield and plant traits in a tropical maize population. Molecular Breeding, 2006, 17(3): 227-239.
doi: 10.1007/s11032-005-5679-4
[47] Zhang Z M, Zhao M J, Ding H P, et al. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russian Journal of Genetics, 2006, 42(3): 306-310.
doi: 10.1134/S1022795406030112
[48] Sibov S T, de Souza C L, Garcia A A F, et al. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture. Hereditas, 2004, 139(2): 107-115.
doi: 10.1111/j.1601-5223.2003.01667.x
[49] Zhou Z Q, Zhang C S, Zhou Y, et al. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. BMC Genomics, 2016, 17(1): 1-15.
[50] Zhou Z Q, Zhang C S, Lu X H, et al. Dissecting the genetic basis underlying combining ability of plant height related traits in maize. Frontiers in Plant Science, 2018, 9: 1117.
doi: 10.3389/fpls.2018.01117
[51] 尤诗婷, 邓策, 李会敏, 等. 玉米株高和穗位高的QTL定位. 河南农业科学, 2019, 48(6): 20-25.
You S T, Deng C, Li H M, et al. QTL mapping of plant height and ear height in maize. Journal of Henan Agricultural Sciences, 2019, 48(6): 20-25.
[52] 何坤辉, 常立国, 崔婷婷, 等. 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016, 49(8): 1443-1452.
He K H, Chang L G, Cui T T, et al. Mapping QTL for plant height and ear height in maize under multi-environments. Scientia Agricultura Sinica, 2016, 49(8): 1443-1452.
[53] Li Y L, Dong Y B, Niu S Z, et al. The genetic relationship among plant-height traits found using multiple-trait QTL mapping of a dent corn and popcorn cross. Genome, 2007, 50(4): 357-364.
doi: 10.1139/G07-018
[54] Schneeberger R, Tsiantis M, Freeling M, et al. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development (Cambridge, England), 1998, 125(15): 2857-2865.
doi: 10.1242/dev.125.15.2857
[55] Zhao Y, Wang H S, Bo C, et al. Genome-wide association study of maize plant architecture using F1 populations. Plant Molecular Biology, 2019, 99(1-2): 1-15.
doi: 10.1007/s11103-018-0797-7
[56] Vanous A, Gardner C, Blanco M, et al. Association mapping of flowering and height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. The Plant Genome, 2018, 11(2): 170083.
doi: 10.3835/plantgenome2017.09.0083
[57] 李凯, 张晓祥, 管中荣, 等. 玉米株高和穗位高的全基因组关联分析. 玉米科学, 2017, 25(6): 1-7.
Li K, Zhang X X, Guan Z R, et al. Genome-wide association analysis of plant height and ear height in maize. Journal of Maize Sciences, 2017, 25(6): 1-7.
[58] Liu H J, Wang X Q, Xiao Y J, et al. CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020, 21(1): 20.
doi: 10.1186/s13059-020-1930-x
[59] Hu S L, Wang C L, Sanchez D L, et al. Gibberellins promote brassinosteroids action and both increase heterosis for plant height in maize (Zea mays L.). Frontiers in Plant Science, 2017, 8: 1039.
doi: 10.3389/fpls.2017.01039
[60] Dell’Acqua M, Gatti D M, Pea G, et al. Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 2015, 16: 167.
doi: 10.1186/s13059-015-0716-z
[61] Yang N, Lu Y L, Yang X H, et al. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 2014, 10(9): e1004573. DOI: 10.1371/journal.pgen.1004573.
doi: 10.1371/journal.pgen.1004573
[62] Farfan I D B, de la Fuente G N, Murray S C, et al. Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics. PLoS One, 2015, 10(2): e0117737.
[63] Negro S S, Millet E J, Madur D, et al. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. BMC Plant Biology, 2019, 19(1): 318.
doi: 10.1186/s12870-019-1926-4
[64] Zhang Y, Wan J Y, He L, et al. Genome-wide association analysis of plant height using the maize F1 population. Plants, 2019, 8(10): 432.
doi: 10.3390/plants8100432
[65] Gyawali A, Shrestha V, Guill K E, et al. Single-plant GWAS coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height candidate SNPs. BMC Plant Biology, 2019, 19(1): 412.
doi: 10.1186/s12870-019-2000-y
[66] Mazaheri M, Heckwolf M, Vaillancourt B, et al. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biology, 2019, 19(1): 45.
doi: 10.1186/s12870-019-1653-x pmid: 30704393
[67] Lai X J, Schnable J C, Liao Z Q, et al. Genome-wide characterization of non-reference transposable element insertion polymorphisms reveals genetic diversity in tropical and temperate maize. BMC Genomics, 2017, 18(1): 702.
doi: 10.1186/s12864-017-4103-x
[68] 刘坤, 张雪海, 孙高阳, 等. 玉米株型相关性状的全基因组关联分析. 中国农业科学, 2018, 51(5): 821-834.
Liu K, Zhang X H, Sun G Y, et al. Genome-wide association studies of plant type traits in maize. Scientia Agricultura Sinica, 2018, 51(5): 821-834.
[69] Peiffer J A, Romay M C, Gore M A, et al. The genetic architecture of maize height. Genetics, 2014, 196(4): 1337-1356.
doi: 10.1534/genetics.113.159152 pmid: 24514905
[70] Becraft P W, Stinard P S, McCarty D R. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science, 1996, 273(5280): 1406-1409.
pmid: 8703079
[71] Bensen R J, Johal G S, Crane V C, et al. Cloning and characterization of the maize An1 gene. The Plant Cell, 1995, 7(1): 75-84.
[72] Makarevitch I, Thompson A, Muehlbauer G J, et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012, 7(1): e30798.
doi: 10.1371/journal.pone.0030798
[73] Cassani E, Bertolini E, Cerino Badone F, et al. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Molecular Breeding, 2009, 24(4): 375-385.
doi: 10.1007/s11032-009-9298-3
[74] Bolduc N, Hake S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. The Plant Cell, 2009, 21(6): 1647-1658.
doi: 10.1105/tpc.109.068221
[75] Suzuki M, Latshaw S, Sato Y, et al. The Maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiology, 2008, 146(3): 1193-1206.
doi: 10.1104/pp.107.114108
[76] Chen Z L, Li W, Gaines C, et al. Structural variation at the maize WUSCHEL1 locus alters stem cell organization in inflorescences. Nature Communications, 2021, 12: 2378.
doi: 10.1038/s41467-021-22699-8
[77] Teng F, Zhai L H, Liu R X, et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. The Plant Journal, 2013, 73(3): 405-416.
doi: 10.1111/tpj.12038
[78] Lawit S J, Wych H M, Xu D P, et al. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant & Cell Physiology, 2010, 51(11): 1854-1868.
[79] Bommert P, Lunde C N, Nardmann J, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development (Cambridge, England), 2005, 132(6): 1235-1245.
doi: 10.1242/dev.01671
[80] Best N B, Hartwig T, Budka J, et al. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiology, 2016, 171(4): 2633-2647.
doi: 10.1104/pp.16.00399
[81] Avila L M, Cerrudo D, Swanton C, et al. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. Journal of Experimental Botany, 2016, 67(5): 1577-1588.
doi: 10.1093/jxb/erv554 pmid: 26767748
[82] Phillips K A, Skirpan A L, Liu X, et al. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. The Plant Cell, 2011, 23(2): 550-566.
doi: 10.1105/tpc.110.075267
[83] Kir G, Ye H X, Nelissen H, et al. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiology, 2015, 169(1): 826-839.
doi: 10.1104/pp.15.00367
[84] Li Z X, Zhang X R, Zhao Y J, et al. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnology Journal, 2018, 16(1): 86-99.
doi: 10.1111/pbi.2018.16.issue-1
[85] Helliwell C A, Chandler P M, Poole A, et al. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. PNAS, 2001, 98(4): 2065-2070.
pmid: 11172076
[86] Wen T J, Schnable P S. Analyses of mutants of three genes that influence root hair development in Zea mays(Gramineae) suggest that root hairs are dispensable. American Journal of Botany, 1994, 81(7): 833-842.
doi: 10.1002/j.1537-2197.1994.tb15564.x
[87] Sawers R J H, Linley P J, Gutierrez-Marcos J F, et al. The Elm1 (ZmHy2) gene of maize encodes a phytochromobilin synthase. Plant Physiology, 2004, 136(1): 2771-2781.
doi: 10.1104/pp.104.046417
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[6] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[7] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[8] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[9] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[10] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[11] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[12] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[13] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.
[14] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[15] 田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.