Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (12): 47-60    DOI: 10.13523/j.cb.2111005
玉米生物育种基础研究与关键技术专辑     
玉米籽粒淀粉含量遗传基础与调控机制*
王锐璞1,2,董振营1,2,高悦欣1,2,龙艳1,2,3,***(),万向元1,2,3,***()
1 北京科技大学生物与农业研究中心 化学与生物工程学院 顺德研究生院 北京 100083
2 北京中智生物农业国际研究院 北京 100192
3 北京首佳利华科技有限公司 主要作物生物育种北京市工程实验室 生物育种北京市国际科技合作基地 北京 100192
Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel
WANG Rui-pu1,2,DONG Zhen-ying1,2,GAO Yue-xin1,2,LONG Yan1,2,3,***(),WAN Xiang-yuan1,2,3,***()
1 Research Center of Biology and Agriculture, Shunde Graduate School, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
 全文: PDF(1423 KB)   HTML
摘要:

玉米是世界上种植面积最大、总产量最高的粮食作物,其籽粒重量的70%来自于淀粉。淀粉不仅是人类及其他动物的主要能量来源,同时也是化工等行业的重要原料。利用拟南芥、水稻等模式植物,淀粉合成相关基因克隆与功能研究已取得较多进展。近年来,随着玉米淀粉含量相关遗传学研究的深入开展,通过数量性状位点(quantitative trait locus mapping,QTL)定位、全基因组关联分析(genome-wide association study, GWAS)及各种组学分析方法,发现了较多新的与淀粉含量相关的遗传位点及候选基因,但是尚缺乏归纳总结。综述了玉米籽粒淀粉合成与调控研究进展,对玉米籽粒淀粉含量相关的QTL和基因进行汇总和分析,通过构建一致性物理图谱,提炼玉米籽粒淀粉含量遗传定位热点区间,这为进一步解析玉米籽粒淀粉合成与代谢相关基因的功能提供参考,并为分子标记辅助育种提供遗传资源。

关键词: 玉米淀粉含量QTL定位全基因组关联分析    
Abstract:

Maize is the crop with the largest planting area and the highest yield in the world. Starch accounts for about 70% of its grain weight, which is not only the main energy source for human beings and other animals, but also an important raw material for chemical industry. Assisted by the research on Arabidopsis thaliana, rice and other model plants, there have been accumulated a lot of information about the main biological processes of starch synthesis and functions of related gene in plants. Recently, many new starch content-related loci and candidate genes have been also further discovered through quantitative trait loci (QTL) mapping, genome-wide association study (GWAS) and omics-based methods in maize and other plants. However, summarization about such information is currently limited in maize. Here, the research progress of starch synthesis and regulation mechanisms in maize kernel were reviewed, and the QTLs and genes related to starch content in maize kernel were summarized and analyzed. The consistent physical map for starch content in maize kernel was further constructed, and the genetic hotspots were identified. The data will be useful for further deciphering the genetic basis of starch content in maize kernel and for molecular marker-assisted selection in maize breeding.

Key words: Maize    Starch content    QTL mapping    Genome-wide association study
收稿日期: 2021-11-01 出版日期: 2022-01-13
ZTFLH:  Q819  
基金资助: * 中央高校基本科研业务费专项资金(06500060);国家“万人计划”科技创新领军人才特殊支持经费(201608)
通讯作者: 龙艳,万向元     E-mail: longyan@ustb.edu.cn;wanxiangyuan@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王锐璞
董振营
高悦欣
龙艳
万向元

引用本文:

王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.

WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel. China Biotechnology, 2021, 41(12): 47-60.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2111005        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I12/47

功能途经 基因名 功能 基因号 位置 参考文献
籽粒淀粉合成/ SS3b-2 淀粉合成酶2 Zm00001d002256 Chr2: 9053730~9067950 [22]
代谢 Sbe4 淀粉分支酶Ⅱa Zm00001d003817 Chr2: 60750943~60764679 [23]
Zpu1 普鲁兰酶 Zm00001d004438 Chr2: 111721672~111777106 [24]
Amya3 α淀粉酶3 Zm00001d005890 Chr2: 191850546~191855397 [25]
Sh2 AGPase大亚基 Zm00001d044129 Chr3: 219978458~219991074 [26]
Su1 异淀粉酶1 Zm00001d049753 Chr4: 43109069~43120667 [27]
Bt2 AGPase小亚基 Zm00001d050032 Chr4: 61314075~61322850 [28]
SS5 淀粉合成酶5 Zm00001d051976 Chr4: 175713376~175732030 [29]
SS2b-1 淀粉合成酶7 Zm00001d052263 Chr4: 185227334~185235952 [22]
SS2c 淀粉合成酶6 Zm00001d014150 Chr5: 34227799~34246483 [22]
Sbe1 淀粉分支酶I Zm00001d014844 Chr5: 65184602~65198975 [30]
Bt1 ADP/ATP转运蛋白 Zm00001d015746 Chr5: 115747352~115752463 [31]
Ae1 淀粉分支酶II Zm00001d016684 Chr5: 172411495~172431915 [32]
SS2b-2 淀粉合成酶 Zm00001d018033 Chr5: 212494773~212500400 [22]
Su2 淀粉合成酶 Zm00001d037234 Chr6: 117122565~117129709 [33]
Isa2 异淀粉酶2 Zm00001d038121 Chr6: 148612409~148616192 [34]
Gbss1 NDP-葡萄糖-淀粉葡萄糖基转移酶 Zm00001d019479 Chr7: 36169751~36179889 [22]
Isa3 异淀粉酶3 Zm00001d020799 Chr7: 133231303~133246105 [34]
Amyb5 β淀粉酶5 Zm00001d021702 Chr7: 160751242~160759567 [35]
SS4 淀粉合成酶4 Zm00001d010821 Chr8: 128733162~128745077 [22]
Sbe3 淀粉分支酶Ⅱa Zm00001d011301 Chr8:146174056~146176755 [22]
SS1 淀粉合成酶1 Zm00001d045261 Chr9: 17400322~17414094 [36]
Wx1 颗粒结合淀粉合酶 Zm00001d045462 Chr9: 23105829~23112818 [37]
Du1 淀粉合成酶 Zm00001eb413290 Chr10: 60530370~60541705 [38]
SS3b-1 淀粉合成酶3 Zm00001d026337 Chr10: 143785332~143797662 [22]
糖代谢 Sus2 蔗糖合酶 Zm00001d029091 Chr1: 57484476~57494758 [39]
Pdh2 丙酮酸脱氢酶 Zm00001d031659 Chr1: 197758695~197777870 [40]
Mdh4 苹果酸脱氢酶4 Zm00001d032695 Chr1: 234901158~234909589 [41]
Pgm1 磷酸葡糖变位酶 Zm00001d033746 Chr1: 272696370~272706106 [42]
Phi1 磷酸己糖异构酶1 Zm00001d034256 Chr1: 288167490~288178421 [42]
Incw4 细胞壁转化酶4 Zm00001d001941 Chr2: 3199731~3206350 [43]
Ivr1 蔗糖果糖基转移酶1 Zm00001d002830 Chr2: 24144121~24151688 [44]
Mn1 细胞壁转化酶CWI-2 Zm00001d003776 Chr2: 58874832~58880827 [45]
Pdh1 磷酸葡萄糖酸脱氢酶 Zm00001d042184 Chr3: 155337909~155342351 [42]
Ivr2 蔗糖果糖基转移酶2 Zm00001d014947 Chr5: 69451084~69457258 [46]
Incw1 细胞壁转化酶1 Zm00001d016708 Chr5: 173402317~173409783 [47]
Pgd1 磷酸葡萄糖酸脱氢酶 Zm00001d035925 Chr6: 60487799~60493483 [42]
Mdh2 苹果酸脱氢酶2 Zm00001d039089 Chr6: 169781193~169788867 [41]
功能途经 基因名 功能 基因号 位置 参考文献
Ra3 海藻糖磷酸酶 Zm00001d022193 Chr7: 172483459~172490694 [48]
Tpi3 丙糖磷酸异构酶 Zm00001d008619 Chr8: 14784563~14791546 [49]
Spp1 蔗糖磷酸酶 Zm00001d010523 Chr8: 119141666~119150936 [50]
ZmHxk3b 己糖激酶 Zm00001d011889 Chr8: 164036637~164046360 [51]
Sps1 L-乳酸脱氢酶 Zm00001d012036 Chr8: 166916106~166924760 [52]
Pmg1 磷酸甘油酸变位酶 Zm00001d012518 Chr8: 176002930~176010889 [53]
Sh1 蔗糖合酶 Zm00001d045042 Chr9: 10905434~10914444 [54]
Sus1 蔗糖合酶 Zm00001d047253 Chr9: 124176672~124186372 [55]
Incw3 细胞壁转化酶3 Zm00001d025355 Chr10: 115295549~115301001 [43]
转录因子 ZmDof36 Dof转录因子 Zm00001d029512 Chr1: 73971569~73973965 [14]
ZmDar1 LIM-转录因子 Zm00001d030953 Chr1: 168696230~168711004 [19]
Nkd1 不定域蛋白 Zm00001d002654 Chr2: 18310995~18321506 [18]
ZmNAC34 NAC转录因子 Zm00001d003080 Chr2: 31371654~31375742 [16]
O11 bHLH转录因子 Zm00001d003677 Chr2: 53849188~53854880 [13]
PBF Dof转录因子 Zm00001d005100 Chr2: 158142366~158156919 [11]
ZmNAC128 NAC转录因子 Zm00001d040189 Chr3: 31399624~31404748 [17]
ZmDof3 Dof转录因子 Zm00001d035651 Chr6: 38680964~38686390 [20]
ZmDa1 LIM-转录因子 Zm00001d035844 Chr6: 55319793~55330745 [19]
O2 bZIP转录因子 Zm00001d018971 Chr7: 11073877~11079732 [11]
ZmbZIP91 bZIP转录因子 Zm00001d021191 Chr7: 145444135~145450407 [12]
ZmNAC130 NAC转录因子 Zm00001d008403 Chr8: 7618212~7622782 [17]
ZmMADS1a MADS转录因子 Zm00001d048474 Chr9: 156960598~156980213 [15]
Nkd2 不定域蛋白 Zm00001d026113 Chr10: 138718039~138726894 [18]
ZmEREB156 AP2-EREBP转录因子 Zm00001d026447 Chr10: 145981850~145985482 [21]
RNA剪接 Dek35 PPR蛋白 Zm00001d033749 Chr1: 272715686~272721228 [56]
Dek37 PPR蛋白 Zm00001d003543 Chr2: 47656750~47661393 [57]
表1  与玉米籽粒淀粉含量相关基因汇总
图1  玉米籽粒淀粉含量相关QTL及SNP在玉米染色体的分布
序号 染色体 热点区间/Mb 研究频
次/次
区间内已克隆基因
1 1 33.15~38.08 5
2 1 39.59~41.70 4
3 1 85.32~91.15 4
4 1 175.17~185.91 6
5 1 192.99~203.22 5 Pdh2
6 2 11.64~13.64 5
7 2 210.23~217.77 4
8 3 182.13~201.68 5
9 4 17.75~18.64 5
10 4 169.99~172.60 4
11 4 174.15~180.09 5 SS5
12 4 181.20~185.65 6 SS2b-1
13 5 10.55~12.48 4
14 5 14.45~16.10 4
15 5 19.66~67.95 8 SS2c
Sbe1
16 5 84.50~163.31 8 Bt1
17 5 175.32~179.76 5
18 5 184.92~199.62 5
19 7 136.69~137.13 4
20 7 165.71~165.72 4
21 8 9.16~13.55 6
22 8 19.84~21.39 4
23 8 23.22~25.93 5
24 8 113.63~165.20 11 Spp1
SS4
Sbe3
ZmHxk3b
25 9 10.22~10.91 4 Sh1
26 9 16.08~17.93 4 SS1
27 9 23.84~25.25 5
28 9 26.43~105.96 8
29 10 85.29~112.73 5
30 10 131.46~131.48 4
31 10 133.02~133.56 4
表2  玉米籽粒淀粉含量相关QTL热点区间总结
序号 染色体 热点区间/Mb 区间内
SNP数
区间内已
克隆基因
1 1 0.23~2.47 5
2 1 118.83~121.61 6
3 2 0.16~25.87 37 SS3b-2
Nkd1
Ivr1
4 3 0.44~5.82 11
5 3 213.34~217.22 5
6 4 11.58~17.53 7
7 5 0.03~15.04 26
8 5 19.21~23.54 5
9 5 175.32~179.65 6
10 5 189.10~191.75 5
11 5 205.47~213.50 12 SS2b-2
12 6 0.83~2.41 5
13 8 0.71~15.68 20 ZmNAC130
Tpi3
14 9 2.55~5.52 7
15 9 128.75~135.94 6
表3  玉米籽粒淀粉含量相关SNP热点区间总结
图2  玉米籽粒淀粉含量相关已克隆基因、QTL热点区间、SNP热点区间及其重叠区间在玉米染色体的分布
序号 染色体 重叠区间/Mb 区间内与糖代谢
相关候选基因
1 2 11.64~13.64 Zm00001d002454
2 5 10.55~12.48 Zm00001d013428
Zm00001d013450
3 5 14.45~15.04 /
4 5 19.21~23.54 /
5 5 175.32~179.76 Zm00001d016768
6 5 189.10~191.75 Zm00001d017258
Zm00001d017271
7 8 9.16~13.55 Zm00001d008491
表4  玉米籽粒淀粉含量相关QTL及SNP热点区间的重叠区间
[1] Downs S M, Marie Thow A, Ghosh-Jerath S, et al. Aligning food-processing policies to promote healthier fat consumption in India. Health Promotion International, 2015, 30(3): 595-605.
doi: 10.1093/heapro/dat094
[2] 张海林, 高旺盛, 陈阜, 等. 保护性耕作研究现状、发展趋势及对策. 中国农业大学学报, 2005, 10(1): 16-20.
Zhang H L, Gao W S, Chen F, et al. Prospects and present situation of conservation tillage. Journal of China Agricultural University, 2005, 10(1): 16-20.
[3] Nelson O, Pan D. Starch synthesis in maize endosperms. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46(1): 475-496.
doi: 10.1146/arplant.1995.46.issue-1
[4] Jenkins P J, Donald A M. The influence of amylose on starch granule structure. International Journal of Biological Macromolecules, 1995, 17(6): 315-321.
pmid: 8789332
[5] Tako M, Hizukuri S. Retrogradation mechanism of rice starch. Cereal Chemistry Journal, 2000, 77(4): 473-477.
doi: 10.1094/CCHEM.2000.77.4.473
[6] Nakamura Y, Sakurai A, Inaba Y, et al. The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch-Stärke, 2002, 54(3-4): 117-131.
doi: 10.1002/1521-379X(200204)54:3/4<117::AID-STAR117>3.0.CO;2-2
[7] Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant & Cell Physiology, 2002, 43(7): 718-725.
[8] Jeon J S, Ryoo N, Hahn T R, et al. Starch biosynthesis in cereal endosperm. Plant Physiology and Biochemistry, 2010, 48(6): 383-392.
doi: 10.1016/j.plaphy.2010.03.006
[9] Whitt S R, Wilson L M, Tenaillon M I, et al. Genetic diversity and selection in the maize starch pathway. PNAS, 2002, 99(20): 12959-12962.
doi: 10.1073/pnas.202476999
[10] Gao Z, Keeling P, Shibles R, et al. Involvement of lysine-193 of the conserved “K-T-G-G” motif in the catalysis of maize starch synthase IIa. Archives of Biochemistry and Biophysics, 2004, 427(1): 1-7.
doi: 10.1016/j.abb.2004.01.010
[11] Zhang Z Y, Zheng X X, Yang J, et al. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. PNAS, 2016, 113(39): 10842-10847.
doi: 10.1073/pnas.1613721113
[12] Chen J, Yi Q, Cao Y, et al. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters. Journal of Experimental Botany, 2016, 67(5): 1327-1338.
doi: 10.1093/jxb/erv527
[13] Feng F, Qi W W, Lv Y, et al. OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. The Plant Cell, 2018, 30(2): 375-396.
doi: 10.1105/tpc.17.00616 pmid: 29436476
[14] Wu J D, Chen L, Chen M C, et al. The DOF-domain transcription factor ZmDOF36 positively regulates starch synthesis in transgenic maize. Frontiers in Plant Science, 2019, 10: 465.
doi: 10.3389/fpls.2019.00465
[15] Dong Q, Wang F, Kong J J, et al. Functional analysis of ZmMADS1a reveals its role in regulating starch biosynthesis in maize endosperm. Scientific Reports, 2019, 9: 3253.
doi: 10.1038/s41598-019-39612-5
[16] Peng X J, Wang Q Q, Wang Y, et al. A maize NAC transcription factor, ZmNAC34, negatively regulates starch synthesis in rice. Plant Cell Reports, 2019, 38(12): 1473-1484.
doi: 10.1007/s00299-019-02458-2
[17] Zhang Z Y, Dong J Q, Ji C, et al. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. PNAS, 2019, 116(23): 11223-11228.
doi: 10.1073/pnas.1904995116
[18] Gontarek B C, Neelakandan A K, Wu H, et al. NKD transcription factors are central regulators of maize endosperm development. The Plant Cell, 2016, 28(12): 2916-2936.
doi: 10.1105/tpc.16.00609 pmid: 27895224
[19] Xie G N, Li Z X, Ran Q J, et al. Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnology Journal, 2018, 16(1): 234-244.
doi: 10.1111/pbi.2018.16.issue-1
[20] Qi X, Li S X, Zhu Y X, et al. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm. Plant Molecular Biology, 2017, 93(1-2): 7-20.
doi: 10.1007/s11103-016-0543-y
[21] Huang H H, Xie S D, Xiao Q L, et al. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Scientific Reports, 2016, 6: 27590.
doi: 10.1038/srep27590
[22] Yan H B, Pan X X, Jiang H W, et al. Comparison of the starch synthesis genes between maize and rice: copies, chromosome location and expression divergence. Theoretical and Applied Genetics, 2009, 119(5): 815-825.
doi: 10.1007/s00122-009-1091-5
[23] Gao M, Fisher D K, Kim K N, et al. Independent genetic control of maize starch-branching enzymes IIa and IIb (isolation and characterization of a Sbe2a cDNA). Plant Physiology, 1997, 114(1): 69-78.
pmid: 9159942
[24] Beatty M K, Rahman A, Cao H, et al. Purification and molecular genetic characterization of ZPU1, a pullulanase-type starch-debranching enzyme from maize. Plant Physiology, 1999, 119(1): 255-266.
pmid: 9880368
[25] Young T E, DeMason D A, Close T J. Cloning of an alpha-amylase cDNA from aleurone tissue of germinating maize seed. Plant Physiology, 1994, 105(2): 759-760.
pmid: 8066139
[26] Bhave M R, Lawrence S, Barton C, et al. Identification and molecular characterization of shrunken-2 cDNA clones of maize. The Plant Cell, 1990, 2(6): 581-588.
[27] James M G, Robertson D S, Myers A M. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. The Plant Cell, 1995, 7(4): 417-429.
[28] Hannah L C, Shaw J R, Giroux M J, et al. Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase. Plant Physiology, 2001, 127(1): 173-183.
pmid: 11553745
[29] Liu H M, Yu G L, Wei B, et al. Identification and phylogenetic analysis of a novel starch synthase in maize. Frontiers in Plant Science, 2015, 6: 1013.
[30] Baba T, Kimura K, Mizuno K, et al. Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzyme-I. Biochemical and Biophysical Research Communications, 1991, 181(1): 87-94.
pmid: 1720313
[31] Sullivan T D, Strelow L I, Illingworth C A, et al. Analysis of maize brittle-1 alleles and a defective Suppressor-mutator-induced mutable allele. The Plant Cell, 1991, 3(12): 1337-1348.
[32] Fisher D K, Gao M, Kim K N, et al. Allelic analysis of the maize amylose-extender locus suggests that independent genes encode starch-branching enzymes IIa and IIb. Plant Physiology, 1996, 110(2): 611-619.
pmid: 12226207
[33] Harn C, Knight M, Ramakrishnan A, et al. Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. Plant Molecular Biology, 1998, 37(4): 639-649.
pmid: 9687068
[34] Dinges J R, Colleoni C, James M G, et al. Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. The Plant Cell, 2003, 15(3): 666-680.
doi: 10.1105/tpc.007575
[35] San Segundo B, Ma Casacuberta J, Puigdomènech P. Hormonal and light regulation of the multiple amylase isozymes during seed germination and in vegetative tissues of Zea mays. Plant Science, 1990, 69(2): 167-177.
doi: 10.1016/0168-9452(90)90115-5
[36] Knight M E, Harn C, Lilley C E, et al. Molecular cloning of starch synthase I from maize (W64) endosperm and expression in Escherichia coli. The Plant Journal, 1998, 14(5): 613-622.
doi: 10.1046/j.1365-313X.1998.00150.x
[37] Shure M, Wessler S, Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell, 1983, 35(1): 225-233.
pmid: 6313224
[38] Gao M, Wanat J, Stinard P S, et al. Characterization of dull1, a maize gene coding for a novel starch synthase. The Plant Cell, 1998, 10(3): 399-412.
doi: 10.1105/tpc.10.3.399
[39] Carlson S J, Chourey P S, Helentjaris T, et al. Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene. Plant Molecular Biology, 2002, 49(1): 15-29.
pmid: 12008896
[40] Thelen J J, Miernyk J A, Randall D D. Molecular cloning and expression analysis of the mitochondrial pyruvate dehydrogenase from maize. Plant Physiology, 1999, 119(2): 635-644.
pmid: 9952460
[41] Newton K J, Schwartz D. Genetic basis of the major malate dehydrogenase isozymes in maize. Genetics, 1980, 95(2): 425-442.
pmid: 17249044
[42] Goodman M M, Stuber C W, Newton K J, et al. Five sets of enzyme genes encompassing 13 loci on 4 chromosomes-some possible implications for chromosome segment duplications. Maize Genetics Cooperation News Letter, 1980, 54: 101-102.
[43] Kim J Y, Mahé A, Guy S, et al. Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene, 2000, 245(1): 89-102.
pmid: 10713449
[44] Xu J, Pemberton G H, Almira E C, et al. The Ivr1 gene for invertase in maize. Plant Physiology, 1995, 108(3): 1293-1294.
pmid: 7630946
[45] Cheng W H, Taliercio E W, Chourey P S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. The Plant Cell, 1996, 8(6): 971-983.
pmid: 12239408
[46] Xu J, Avigne W T, McCarty D R, et al. A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism: evidence from a maize invertase gene family. The Plant Cell, 1996, 8(7): 1209-1220.
doi: 10.2307/3870363
[47] Shanker S, Salazar R W, Taliercio E W, et al. Cloning and characterization of full-length cDNA encoding cell-wall invertase from maize. Plant Physiology, 1995, 108(2): 873-874.
pmid: 7610195
[48] Satoh-Nagasawa N, Nagasawa N, Malcomber S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature, 2006, 441(7090): 227-230.
doi: 10.1038/nature04725
[49] Wendel J F, Stuber C W, Goodman M M, et al. Duplicated plastid and triplicated cytosolic isozymes of triosephosphate isomerase in maize (Zea mays L.). Journal of Heredity, 1989, 80(3): 218-228.
pmid: 2732453
[50] Lunn J E, Ashton A R, Hatch M D, et al. Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. PNAS, 2000, 97(23): 12914-12919.
pmid: 11050182
[51] Zhou M L, Zhang Q, Sun Z M, et al. Trehalose metabolism-related genes in maize. Journal of Plant Growth Regulation, 2014, 33(2): 256-271.
doi: 10.1007/s00344-013-9368-y
[52] Worrell A C, Bruneau J M, Summerfelt K, et al. Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. The Plant Cell, 1991, 3(10): 1121-1130.
[53] Graña X, de Lecea L, El-Maghrabi M R, et al. Cloning and sequencing of a cDNA encoding 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase from maize. Possible relationship to the alkaline phosphatase family. Journal of Biological Chemistry, 1992, 267(18): 12797-12803.
pmid: 1535626
[54] Chourey P S, Nelson O E. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochemical Genetics, 1976, 14(11-12): 1041-1055.
pmid: 1016220
[55] McCarty D R, Shaw J R, Hannah L C. The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. PNAS, 1986, 83(23): 9099-9103.
pmid: 16593784
[56] Chen X Z, Feng F, Qi W W, et al. Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Molecular Plant, 2017, 10(3): 427-441.
doi: 10.1016/j.molp.2016.08.008
[57] Dai D W, Luan S C, Chen X Z, et al. Maize Dek37 encodes a P-type PPR protein that affects cis -splicing of mitochondrial nad2 intron 1 and seed development. Genetics, 2018, 208(3): 1069-1082.
doi: 10.1534/genetics.117.300602
[58] Ballicora M A, Iglesias A A, Preiss J. ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynthesis Research, 2004, 79(1): 1-24.
pmid: 16228397
[59] Huang B Q, Hennen-Bierwagen T A, Myers A M. Functions of multiple genes encoding ADP-glucose pyrophosphorylase subunits in maize endosperm, embryo, and leaf. Plant Physiology, 2014, 164(2): 596-611.
doi: 10.1104/pp.113.231605
[60] Okita T W, Nakata P A, Anderson J M, et al. The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiology, 1990, 93(2): 785-790.
pmid: 16667537
[61] Preiss J, Danner S, Summers P S, et al. Molecular characterization of the brittle-2 gene effect on maize endosperm ADPglucose pyrophosphorylase subunits. Plant Physiology, 1990, 92(4): 881-885.
pmid: 16667400
[62] Doan D N P, Rudi H D, Olsen O A. The allosterically unregulated isoform of ADP-glucose pyrophosphorylase from barley endosperm is the most likely source of ADP-glucose incorporated into endosperm starch. Plant Physiology, 1999, 121(3): 965-975.
pmid: 10557246
[63] Yu G W, Lv Y, Shen L Y, et al. The proteomic analysis of maize endosperm protein enriched by phos-tagtm reveals the phosphorylation of brittle-2 subunit of ADP-glc pyrophosphorylase in starch biosynthesis process. International Journal of Molecular Sciences, 2019, 20(4): 986.
doi: 10.3390/ijms20040986
[64] Mu-Forster C, Huang R, Powers J R, et al. Physical association of starch biosynthetic enzymes with starch granules of maize endosperm. Granule-associated forms of starch synthase I and starch branching enzyme II. Plant Physiology, 1996, 111(3): 821-829.
pmid: 8754683
[65] Commuri P D, Keeling P L. Chain-length specificities of maize starch synthase I enzyme: studies of glucan affinity and catalytic properties. The Plant Journal, 2001, 25(5): 475-486.
doi: 10.1046/j.1365-313x.2001.00955.x
[66] Tsai C Y. The function of the Waxy locus in starch synthesis in maize endosperm. Biochemical Genetics, 1974, 11(2): 83-96.
pmid: 4824506
[67] Hossain F, Chhabra R, Devi E L, et al. Molecular analysis of mutant granule-bound starch synthase-I (waxy1) gene in diverse waxy maize inbreds. 3 Biotech, 2019, 9(1): 1-10.
doi: 10.1007/s13205-018-1515-5
[68] Blauth S L, Kim K N, Klucinec J, et al. Identification of Mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L. Plant Molecular Biology, 2002, 48(3): 287-297.
pmid: 11855730
[69] Boyer C D, Preiss J. Multiple forms of (1 → 4)-α- D -glucan, (1 → 4)-α- D -glucan-6- glycosyl transferase from developing Zea mays L. Kernels. Carbohydrate Research, 1978, 61(1): 321-334.
doi: 10.1016/S0008-6215(00)84492-4
[70] Boyer C D, Preiss J. Multiple forms of starch branching enzyme of maize: Evidence for independent genetic control. Biochemical and Biophysical Research Communications, 1978, 80(1): 169-175.
pmid: 623651
[71] Boyer C D, Fisher M B. Comparison of soluble starch synthases and branching enzymes from developing maize and teosinte seeds. Phytochemistry, 1984, 23(4): 737.
doi: 10.1016/S0031-9422(00)85014-1
[72] Dang P L, Boyer C D. Maize leaf and kernel starch synthases and starch branching enzymes. Phytochemistry, 1988, 27(5): 1255-1259.
doi: 10.1016/0031-9422(88)80174-2
[73] Makhmoudova A, Williams D, Brewer D, et al. Identification of multiple phosphorylation sites on maize endosperm starch branching enzyme IIb, a key enzyme in amylopectin biosynthesis. Journal of Biological Chemistry, 2014, 289(13): 9233-9246.
doi: 10.1074/jbc.M114.551093 pmid: 24550386
[74] Rahman A, Wong K S, Jane J L, et al. Characterization of SU1 isoamylase, a determinant of storage starch structure in maize. Plant Physiology, 1998, 117(2): 425-435.
pmid: 9625695
[75] Lin Q H, Huang B Q, Zhang M X, et al. Functional interactions between starch synthase III and isoamylase-type starch-debranching enzyme in maize endosperm. Plant Physiology, 2012, 158(2): 679-692.
doi: 10.1104/pp.111.189704
[76] Beloff-Chain A, Pocchiari F. Carbohydrate metabolism. Annual Review of Biochemistry, 1960, 29(1): 295-346.
doi: 10.1146/biochem.1960.29.issue-1
[77] Spielbauer G, Margl L, Hannah L C, et al. Robustness of central carbohydrate metabolism in developing maize kernels. Phytochemistry, 2006, 67(14): 1460-1475.
pmid: 16815503
[78] Glawischnig E, Gierl A, Tomas A, et al. Starch biosynthesis and intermediary metabolism in maize kernels. quantitative analysis of metabolite flux by nuclear magnetic resonance. Plant Physiology, 2002, 130(4): 1717-1727.
pmid: 12481054
[79] Kang B H, Xiong Y Q, Williams D S, et al. Miniature1-encoded cell wall invertase is essential for assembly and function of wall-in-growth in the maize endosperm transfer cell. Plant Physiology, 2009, 151(3): 1366-1376.
doi: 10.1104/pp.109.142331
[80] Chourey P S, Jain M, Li Q B, et al. Genetic control of cell wall invertases in developing endosperm of maize. Planta, 2006, 223(2): 159-167.
pmid: 16025339
[81] Chourey P S, Nelson O E. Interallelic complementation at the sh locus in maize at the enzyme level. Genetics, 1979, 91(2): 317-325.
pmid: 17248886
[82] Chen Y Q, Fu Z Y, Zhang H, et al. Cytosolic malate dehydrogenase 4 modulates cellular energetics and storage reserve accumulation in maize endosperm. Plant Biotechnology Journal, 2020, 18(12): 2420-2435.
doi: 10.1111/pbi.v18.12
[83] Schmidt R J, Burr F A, Burr B. Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science, 1987, 238(4829): 960-963.
pmid: 2823388
[84] Nicolas P, Lecourieux D, Kappel C, et al. The bZIP transcription factor VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening processes. Plant Physiology, 2013, 164(1): 523-525.
[85] Chen D Q, Xu G, Tang W J, et al. Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. The Plant Cell, 2013, 25(5): 1657-1673.
doi: 10.1105/tpc.112.104869
[86] Deng Y T, Wang J C, Zhang Z Y, et al. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnology Journal, 2020, 18(9): 1897-1907.
doi: 10.1111/pbi.v18.9
[87] Zhang J, Lu X Q, Song X F, et al. Mapping quantitative trait loci for oil, starch, and protein concentrations in grain with high-oil maize by SSR markers. Euphytica, 2008, 162(3): 335-344.
doi: 10.1007/s10681-007-9500-9
[88] Wassom J J, Wong J C, Martinez E, et al. QTL associated with maize kernel oil, protein, and starch concentrations; kernel mass; and grain yield in Illinois high oil × B73 backcross-derived lines. Crop Science, 2008, 48(1): 243-252.
doi: 10.2135/cropsci2007.04.0205
[89] Zhang H D, Jin T T, Huang Y Q, et al. Identification of quantitative trait loci underlying the protein, oil and starch contents of maize in multiple environments. Euphytica, 2015, 205(1): 169-183.
doi: 10.1007/s10681-015-1419-y
[90] Wang T T, Wang M, Hu S T, et al. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC Plant Biology, 2015, 15: 288.
doi: 10.1186/s12870-015-0675-2
[91] Cook J P, McMullen M D, Holland J B, et al. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiology, 2012, 158(2): 824-834.
doi: 10.1104/pp.111.185033
[92] Liu Y Y, Dong Y B, Niu S Z, et al. QTL identification of kernel composition traits with popcorn using both F2: 3 and BC2F2 populations developed from the same cross. Journal of Cereal Science, 2008, 48(3): 625-631.
doi: 10.1016/j.jcs.2008.02.003
[93] Wang Y Z, Li J Z, Li Y L, et al. QTL detection for grain oil and starch content and their associations in two connected F2: 3 populations in high-oil maize. Euphytica, 2010, 174(2): 239-252.
doi: 10.1007/s10681-010-0123-1
[94] Wang H W, Han J, Sun W T, et al. Genetic analysis and QTL mapping of stalk digestibility and kernel composition in a high-oil maize mutant (Zea mays L.). Plant Breeding, 2009, 129(3): 318-326.
doi: 10.1111/pbr.2010.129.issue-3
[95] Yang G H, Dong Y B, Li Y L, et al. Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high-oil maize. PLoS One, 2013, 8(1): e53770. DOI: 10.1371/journal.pone.0053770.
doi: 10.1371/journal.pone.0053770
[96] Guo Y Q, Yang X H, Chander S, et al. Identification of unconditional and conditional QTL for oil, protein and starch content in maize. The Crop Journal, 2013, 1(1): 34-42.
doi: 10.1016/j.cj.2013.07.010
[97] Dong Y B, Zhang Z W, Shi Q L, et al. QTL identification and meta-analysis for kernel composition traits across three generations in popcorn. Euphytica, 2015, 204(3): 649-660.
doi: 10.1007/s10681-015-1360-0
[98] Wang Z Y, Liu N, Ku L X, et al. Dissection of the genetic architecture for grain quality-related traits in three RIL populations of maize (Zea mays L.). Plant Breeding, 2016, 135(1): 38-46.
doi: 10.1111/pbr.2016.135.issue-1
[99] Lin F, Zhou L, He B, et al. QTL mapping for maize starch content and candidate gene prediction combined with co-expression network analysis. Theoretical and Applied Genetics, 2019, 132(7): 1931-1941.
doi: 10.1007/s00122-019-03326-z
[100] 张淑贞, 刘志增, 李丁, 等. 玉米DH群体籽粒品质性状的QTL分析. 河北农业大学学报, 2008, 31(3): 1-5.
Zhang S Z, Liu Z Z, Li D, et al. Analysis of quantitative trait loci for grain quality of maize doubled haploid population. Journal of Agricultural University of Hebei, 2008, 31(3): 1-5.
[101] 孙海艳, 蔡一林, 王久光, 等. 玉米主要营养品质性状的QTL定位. 农业生物技术学报, 2011, 19(4): 616-623.
Sun H Y, Cai Y L, Wang J G, et al. QTL mapping for nutritional quality traits in maize. Journal of Agricultural Biotechnology, 2011, 19(4): 616-623.
[102] 李学慧, 申顺先, 李玉玲, 等. 利用种子性状QTL定位高油玉米淀粉含量QTL. 华北农学报, 2012, 27(2): 97-99.
Li X H, Shen S X, Li Y L, et al. QTL analysis of starch content in high-oil maize using seed trait QTL. Acta Agriculturae Boreali-Sinica, 2012, 27(2): 97-99.
[103] 兰天茹, 崔婷婷, 何坤辉, 等. 不同氮水平下玉米子粒品质性状的QTL定位. 玉米科学, 2017, 25(2): 6-11.
Lan T R, Cui T T, He K H, et al. QTL mapping of kernel quality traits under different nitrogen treatments in maize. Journal of Maize Sciences, 2017, 25(2): 6-11.
[104] 赵志鑫, 崔婷婷, 何坤辉, 等. 多环境下玉米籽粒品质性状的QTL定位. 农业生物技术学报, 2018, 26(12): 2027-2035.
Zhao Z X, Cui T T, He K H, et al. Mapping QTL for grain quality traits in maize(Zea mays) under multi-environments. Journal of Agricultural Biotechnology, 2018, 26(12): 2027-2035.
[105] 李雪莹, 吴晗, 张君, 等. 玉米淀粉QTL定位分析. 玉米科学, 2019, 27(6): 46-51.
Li X Y, Wu H, Zhang J, et al. Analysis of QTL mapping on maize starch. Journal of Maize Sciences, 2019, 27(6): 46-51.
[106] Hu S T, Wang M, Zhang X, et al. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnology Journal, 2021, 19(11): 2192-2205.
doi: 10.1111/pbi.v19.11
[107] Wang M, Yan J B, Zhao J R, et al. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Science, 2012, 196: 125-131.
doi: 10.1016/j.plantsci.2012.08.004
[108] Li H, Peng Z Y, Yang X H, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.
doi: 10.1038/ng.2484
[109] Xiao Y J, Liu H J, Wu L J, et al. Genome-wide association studies in maize: praise and stargaze. Molecular Plant, 2017, 10(3): 359-374.
doi: 10.1016/j.molp.2016.12.008
[110] Liu N, Xue Y D, Guo Z Y, et al. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels. Frontiers in Plant Science, 2016, 7: 1046.
doi: 10.3389/fpls.2016.01046 pmid: 27512395
[111] Zheng Y X, Yuan F, Huang Y Q, et al. Genome-wide association studies of grain quality traits in maize. Scientific Reports, 2021, 11(1): 9797.
doi: 10.1038/s41598-021-89276-3
[112] Rong W, Qi L, Wang A Y, et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 2014, 12(4): 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105
[113] Alves M L, Carbas B, Gaspar D, et al. Genome-wide association study for kernel composition and flour pasting behavior in wholemeal maize flour. BMC Plant Biology, 2019, 19(1): 123.
doi: 10.1186/s12870-019-1729-7 pmid: 30940081
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[6] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[9] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[10] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[11] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[12] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[13] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.
[14] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[15] 田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.