Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (06): 142-148    
专家论坛     
组织工程面临的技术挑战与发展趋势
杜娟, 王佃亮, 张艳梅, 孙晋伟
中国人民解放军第二炮兵总医院 北京 100088
Challenges and Prospects of Tissue Engineering
DU Juan, WANG Dian-liang, ZHANG Yan-mei, SUN Jin-wei
The Second Artillery General Hospital, Beijing 100088,China
 全文: PDF(510 KB)   HTML
摘要:

当前组织工程研究仍处于初级阶段,还仅仅是初步应用组织工程技术修复临床简单组织缺损,还有许多制约组织工程应用与发展的基本科学问题没有阐明。随着组织工程各个层面技术难题的逐个攻破,组织工程的内涵和外延将不断拓展,并有助于加快组织工程的产业化进程,促进临床应用。针对组织工程核心要素研究的不足,结合最新的组织工程研究进展,阐述了现代组织工程发展的趋势与前景。

关键词: 种子细胞组织工程生物反应器组织工程支架材料工程器官    
Abstract:

Modern tissue engineering that can only repair simple tissue defects is still in the primary stage of development, in which many basic problems remain currently unknown. With these scientific problems gradually resolved, the definition of the term tissue engineering is also expanding, which can speed up the industrialization process of tissue engineering and promote the application of tissue engineering in clinic. The main problems and research progresses and future prospects involved in modern tissue engineering are reviewed.

Key words: Tissue engineering    Tissue engineering bioreactor    Seed cell    Scaffold material    Tissue engineered organ
收稿日期: 2010-11-11 出版日期: 2011-06-28
ZTFLH:  Q819  
通讯作者: 王佃亮     E-mail: wangdianliang@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杜娟
王佃亮
张艳梅
孙晋伟

引用本文:

杜娟, 王佃亮, 张艳梅, 孙晋伟. 组织工程面临的技术挑战与发展趋势[J]. 中国生物工程杂志, 2011, 31(06): 142-148.

DU Juan, WANG Dian-liang, ZHANG Yan-mei, SUN Jin-wei. Challenges and Prospects of Tissue Engineering. China Biotechnology, 2011, 31(06): 142-148.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I06/142

[1] Bongso A, Fong C Y, Gauthaman K. Taking stem cells to the clinic: major challenges. J Cell Biochem, 2008,105:1352-1360.
[2] Nichols J E, Niles J A, Cortiella J. Design and development of tissue engineered lung: Progress and challenges.Organogenesis, 2009,5(2):57-61.
[3] Sharma R, Greenhough S, Medine C, et al. Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction. J Biomed Biotechnol,2010,2:36-47.
[4] Sailon A M, Allori A C, Davidson E H, et al. A novel flow-perfusion bioreactor supports 3D dynamic cell culture.J Biomed Biotechnol,2009,873-816.
[5] Turner S, Wong H P, Rai J, et al.Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Mol Hum Reprod.2010,16(9):685-694.
[6] Danielsson C, Ruault S, Simonet M, et al. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Biomaterials, 2006,(27):1410-1415.
[7] Gong Y, Zhou Q,Gao C, et al. In vitro and in vivo degradability and cytocompatibility of poly(L-lactic acid) scaffold fabricated by a gelatin particle leaching method. Acta Biomaterialia,2007,(3):531-540.
[8] Rossello R A, Cell communication and tissue engineering. J Commun Integr Biol,2010,3(1):53-56.
[9] Mieszawska A J, Kaplan D L. Smart biomaterials-regulating cell behavior through signaling molecules. BMC Biol, 2010,8:59-65.
[10] Hench L L, Polak J M. Third-generation biomedical materials. Science,2002, 295:1014-1017.
[11] van Lenthe G H, Hagenmüller H, Bohner M, et al. Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials, 2007,(28):2479-2490.
[12] Xu Q, Lu H, Zhang J, et al. Tissue engineering scaffold material of porous nanohydroxyapatite/polyamide. J Nanomedicine, 2010,5:331-335.
[13] Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions.Prog Polym Sci, 2010,35(7):868-892.
[14] Wei G, Ma P X. Nanostructured biomaterials for regeneration. Adv Funct Mater, 2008,18(22):3566-3582.
[15] Freytes D O, Wan L Q, Vunjak-Novakovic G. Geometry and force control of cell function. J Cell Biochem,2009,108(5):1047-1058.
[16] Freed L E, Guilak F, Guo X E, et al. Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling.Tissue Eng,2006,12(12):3285-3305.
[17] Niklason L E, Abbott W, Gao J, et al. Morphologic and mechanical characteristics of engineered bovine arteries. The Journal of the American Medical Association 2001,285(5):573-576.
[18] Wang D L, Liu W S, Han B Q, et al. The bioeactor: A powerful tool for large-scale culture of animal cells. Curr Pharm Biotechnol,2005,6(5):35-41.

[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[3] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[4] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[5] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[6] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[7] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[8] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[9] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[10] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[11] 张晓敏, 王世勇, 李根, 赵红斌. Ⅰ型胶原/聚己内酯/凹凸棒石复合支架材料体外诱导成骨的研究[J]. 中国生物工程杂志, 2016, 36(5): 27-33.
[12] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[13] 王佃亮. 组织器官三维构建及原位组织工程概念——组织工程连载之四[J]. 中国生物工程杂志, 2014, 34(8): 112-116.
[14] 王佃亮. 种子细胞——组织工程连载之三[J]. 中国生物工程杂志, 2014, 34(7): 108-113.
[15] 王佃亮. 组织工程的诞生与发展——组织工程 连载之一[J]. 中国生物工程杂志, 2014, 34(5): 122-129.