Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (08): 100-105    DOI: Q815
技术与方法     
响应面法优化枯草芽孢杆菌产脂肪酶的合成培养基
宋萍,戚小灵,胡燚,谢宁昌
南京工业大学生物与制药工程学院 南京 210009
Optimization of Lipase Production Conditions by Bacillus subtilis Using Surface Methodology
SONG Ping,QI Xiao-ling,HU Yi,XIE Ning-chang
College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
 全文: PDF(1485 KB)   HTML
摘要:

对枯草芽孢杆菌(Bacillus subtilis) CICC 20034利用合成培养基液体发酵产脂肪酶的条件进行了优化。首先采用单因子实验筛选出最适诱导剂为三丁酸甘油酯,氮源为尿素,碳源为葡萄糖,无机盐为MgSO4。在此基础上,利用Plackett-Burman设计对影响产酶因素的效应进行评价,筛选出具有显著效应的三丁酸甘油酯、尿素、KH2PO4和培养基起始pH值四个最显著的因素。用最陡爬坡路径逼近最大产酶区域后,利用响应面中心组合设计对显著因素进行优化,获得最适合成培养基组分为:葡萄糖8 g/l,尿素8.57 g/l,三丁酸甘油酯 2.62 %,KH2PO4 2.59 g/l,MgSO4·7H2O 0.5 g/l,Tritonx-100 0.5 g/l,pH9.47。优化后的B. subtilis CICC 20034胞外脂肪酶活力达0.483 U /ml,比初始酶活力0.072 U /ml提高了6.7倍。

关键词: 脂肪酶枯草芽孢杆菌Plackett-Burman设计响应面法优化    
Abstract:

The fermentation conditions of lipase production by Bacillus subtilis CICC 20034 were optimized. Initially, the most suitable intruder tributyrin, nitrogen source urea, carbon glucose, and MgSO4 were selected according to single factorial experiments respectively. Based on the result, screening methodology Plackett-Burman design was used to evaluate the effects of twelve factors related to lipase production and four statistically significant factors tributyrin, urea, KH2PO4 and pH were selected. The path of steepest ascent was used to approach the optimal region of lipase production subsequently. Then, the optimal combined concentration for maximum enzyme activity were further optimized by response surface methodology and determined as follows: tributyrin 2. 62%, urea 8.57g/L, KH2PO4 2.59g/L and pH 9.47. The optimization of culture conditions of B.subtilis CICC 20034 led to a 6.7-fold increase in lipase production relative to initial result 0.072 /ml, which indicate that single factor in combination with response surface methodology, is an effective method for optimization of lipase production conditions by B.subtilis CICC 20034.

Key words: Lipase    Bacillus subtilis    Plackett-Burman design    Response surface methodology    Optimization
收稿日期: 2010-01-21 出版日期: 2010-08-25
基金资助:

国家自然科学基金重点项目(20936002)、国家自然科学基金 (20906049)资助项目

通讯作者: 谢宁昌     E-mail: biotech@njut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宋萍
戚小灵
胡燚
谢宁昌

引用本文:

宋萍 戚小灵 胡燚 谢宁昌. 响应面法优化枯草芽孢杆菌产脂肪酶的合成培养基[J]. 中国生物工程杂志, 2010, 30(08): 100-105.

SONG Ping, CU Xiao-Ling, HU Yi, XIE Ning-Chang. Optimization of Lipase Production Conditions by Bacillus subtilis Using Surface Methodology. China Biotechnology, 2010, 30(08): 100-105.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Q815        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I08/100

[1] Sharma R, Chisti Y, Banerjee U C. Production, purification, properties of induced lipases. Biotechnol Adv. 2001, 19: 627662. 
[2] 牛冬云,张义正. 碱性脂肪酶产生菌的筛选及产酶条件的优化. 食品与发酵工业, 2002, 29(5): 2831. Niu D Y, Zhang Y Z. Food and Fermentation Industries, 2002, 29(5): 2831. 
[3] Lesuisse E, Schanck K, Colson C. Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pHtolerant enzyme. Eur J Biochem, 1993, 216: 155160. 
[4] Nthangeni M B, Patterton H G, Tonder A, et al. Overexpression and properties of a purified recombinant Bacillus licheniformis lipase: a comparative report on Bacillus lipases. Enzyme Microb Technol, 2001, 28: 705712. 
[5] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 1976, 72: 248254. 
[6] Tang L, Xia L. Purification and partial characterization of a lipase from Bacillus coagulans ZJU318. Appl Biochem Biotech, 2005, 125: 139146. 
[7] He X S, Brückner R, Doi R H. The protease genes of Bacillus subtilis. Res Microbiol, 1991, 142, 797803. 
[8] Ma J, Zhang Z, Wang B. Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif, 2006, 45: 2229. 
[9] Steinmetz M, Kunst F, Dedonder R. Mapping of mutations affecting synthesis of exocellular enzymes in Bacillus subtilis. Mol Gen Genet, 1976, 148: 281285. 
[10] Lesuisse E, Schanck K, Colson C. Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pHtolerant enzyme. Eur J Biochem, 1993, 216, 155160. 
[11] Eggert T, Pouderoyen G, Dijkstra B W. Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and threedimensional structure. FEBS Lett, 2001, 502: 8992.

[1] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[2] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[3] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[4] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[5] 姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.
[6] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[7] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[8] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[9] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[10] 林海蛟,张继福,张云,孙爱君,胡云峰. 添加剂对大孔吸附树脂固定化脂肪酶的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 38-51.
[11] 高福兰,齐家龙,舒聪妍,谢航航,黄惟巍,刘存宝,杨旭,孙文佳,白红妹,马雁冰. 序列优化的小鼠IL-33基因在哺乳动物细胞中的有效分泌表达[J]. 中国生物工程杂志, 2019, 39(3): 46-55.
[12] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[13] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[14] 任莉琼,吴敬,陈晟. 共表达N-乙酰转移酶提高Aspergillus nidulans α-葡糖苷酶在毕氏酵母中的表达研究 *[J]. 中国生物工程杂志, 2019, 39(10): 75-81.
[15] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.