
枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *
Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase
对来源于枯草芽孢杆菌菌株168(Bacillus subtilis 168)的壳聚糖酶编码基因进行了序列优化及全合成,并在毕赤酵母(Pichia pastoris)中实现了分泌表达,表达产物的蛋白质浓度达到0.30mg/ml。表达的壳聚糖酶最适pH为5.6,最适温度为55℃,比酶活达84.54U/ml。该酶在50℃及以下较稳定。利用该酶水解低脱乙酰度壳聚糖并使用超高效液相色谱-四极杆飞行时间质谱(ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry,UPLC-QTOF MS)对产物的组分进行了分离及鉴定。根据一级质谱信息,推测酶解产物中包含至少37种聚合度2~18,不同脱乙酰度的壳寡糖组分。综上,利用毕赤酵母分泌表达了来源于枯草芽孢杆菌菌株168的壳聚糖酶基因,利用表达产物水解制备了低脱乙酰度壳寡糖并对其组分进行了分析,可为后续壳寡糖结构与功能关系的研究提供参考。
Chitosanase encoding gene of Bacillus subtilis 168 was optimized, synthesized and secretorily expressed in Pichia pastoris. The protein concentration of the expressed product reached 0.30mg/ml. The optimum pH and temperature of the expressed chitosanase was 5.6 and 55℃, respectively, and enzymatic activity reached 84.54U/ml. The chitosanase was continuously thermostable at 50℃. The low deacetylated chitosan was hydrolyzed by this enzyme and the composition of these products were analyzed through utra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS). The results showed that these hydrolysates contained at least 37 different kinds of chitooligosaccharides with degree of polymerization of 2-18 and different degree of deacetylation. In summary, chitooligosaccharides with low degree of deacetylation were prepared through Bacillus subtilis 168 chitosanase expressed in Pichia pastoris and its composition analyzed, which can provide a reference for the study of the relationship between the structure and function of chitooligosaccharides.
枯草芽孢杆菌 / 壳聚糖酶 / 毕赤酵母 / 壳寡糖 / UPLC-QTOF MS {{custom_keyword}} /
Bacillus subtilis / Chitosanase / Pichia pastoris / Chitooligosaccharides / Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry {{custom_keyword}} /
图1 壳聚糖酶基因bscsn重组质粒酶切产物 (a)及其蛋白质表达产物(b)电泳图谱Fig.1 Electrophoresis map of chitosanase gene bscsn recombinant plasmid restriction enzyme hydrolysates (a) and protein expression products (b) (a) M1: DNA marker; E1: Plasmid pGBG1-bscsn digested with XhoⅠand NotⅠ; E2: Plasmid pGBG1-bscsn digested with BglⅡ (b) P1: Protein marker; M2: Expressed protein BSCSN |
图3 BSCSN酶解产物总离子流图(a)及质谱图(b)Fig.3 TIC(a) and mass spectrogram(b) of BSCSN hydrolysis products |
表1 BSCSN酶解产物组分鉴定Table 1 Component identification of BSCSN hydrolysis products |
Numbers | Retention time (min) | Determined (m/z) | Theoretical (m/z) | Predicted components | DP | DDA(%) | ||||
---|---|---|---|---|---|---|---|---|---|---|
A1 | 9.65 | 341.4 | 341.1 | [D2+H]+ | 2 | 100 | ||||
A2 | 9.65 | 544.6 | 544.2 | [A1D2+H]+ | 3 | 67 | ||||
B1 | 15.31 | 502.6 | 502.2 | [D3+H]+ | 3 | 100 | ||||
C1 | 17.30 | 705.8 | 705.3 | [A1D3+H]+ | 4 | 75 | ||||
C2 | 17.30 | 909.0 | 908.4 | [A2D3+H]+ | 5 | 60 | ||||
D1 | 20.76 | 663.7 | 663.3 | [D4+H]+ | 4 | 100 | ||||
D2 | 20.76 | 866.9 | 866.4 | [A1D4+H]+ | 5 | 80 | ||||
D3 | 20.76 | 1070.1 | 1069.4 | [A2D4+H]+ | 6 | 67 | ||||
Numbers | Retention time (min) | Determined (m/z) | Theoretical (m/z) | Predicted components | DP | DDA(%) | ||||
E1 | 24.89 | 514.6 | 514.2 | [A1D5+2H]2+ | 6 | 83 | ||||
E2 | 24.89 | 616.2 | 615.8 | [A2D5+2H]2+ | 7 | 71 | ||||
E3 | 24.89 | 717.8 | 717.3 | [A3D5+2H]2+ | 8 | 63 | ||||
E4 | 24.89 | 819.4 | 818.8 | [A4D5+2H]2+ | 9 | 56 | ||||
F1 | 27.91 | 1189.3 | 1188.5 | [A1D6+H]+ | 7 | 86 | ||||
F2 | 27.91 | 696.8 | 696.3 | [A2D6+2H]2+ | 8 | 75 | ||||
F3 | 27.91 | 798.4 | 797.8 | [A3D6+2H]2+ | 9 | 67 | ||||
F4 | 27.91 | 900.0 | 899.4 | [A4D6+2H]2+ | 10 | 60 | ||||
F5 | 27.91 | 1001.6 | 1000.9 | [A5D6+2H]2+ | 11 | 55 | ||||
F6 | 27.91 | 1103.2 | 1102.4 | [A6D6+2H]2+ | 12 | 50 | ||||
G1 | 30.08 | 777.4 | 776.8 | [A2D7+2H]2+ | 9 | 78 | ||||
G2 | 30.08 | 879.0 | 878.4 | [A3D7+2H]2+ | 10 | 70 | ||||
G3 | 30.08 | 980.6 | 979.9 | [A4D7+2H]2+ | 11 | 64 | ||||
G4 | 30.08 | 1082.1 | 1081.4 | [A5D7+2H]2+ | 12 | 58 | ||||
G5 | 30.08 | 1183.8 | 1183.0 | [A6D7+2H]2+ | 13 | 54 | ||||
G6 | 30.08 | 1285.4 | 1284.5 | [A7D7+2H]2+ | 14 | 50 | ||||
G7 | 30.08 | 1387.0 | 1386.1 | [A8D7+2H]2+ | 15 | 47 | ||||
H1 | 31.56 | 640.0 | 639.6 | [A3D8+3H]3+ | 11 | 73 | ||||
H2 | 31.56 | 707.8 | 707.3 | [A4D8+3H]3+ | 12 | 67 | ||||
H3 | 31.56 | 775.5 | 775.0 | [A5D8+3H]3+ | 13 | 62 | ||||
H4 | 31.56 | 843.3 | 842.7 | [A6D8+3H]3+ | 14 | 57 | ||||
H5 | 31.56 | 911.0 | 910.4 | [A7D8+3H]3+ | 15 | 53 | ||||
H6 | 31.56 | 978.7 | 978.1 | [A8D8+3H]3+ | 16 | 50 | ||||
I1 | 32.69 | 761.5 | 761.0 | [A4D9+3H]3+ | 13 | 69 | ||||
I2 | 32.69 | 829.3 | 828.7 | [A5D9+3H]3+ | 14 | 64 | ||||
I3 | 32.69 | 897.0 | 896.4 | [A6D9+3H]3+ | 15 | 60 | ||||
I4 | 32.69 | 964.7 | 964.1 | [A7D9+3H]3+ | 16 | 56 | ||||
I5 | 32.69 | 1032.4 | 1031.8 | [A8D9+3H]3+ | 17 | 53 | ||||
I6 | 32.69 | 1100.1 | 1099.4 | [A9D9+3H]3+ | 18 | 50 |
Notes: A represents N-Acetyl glucosamine, D represents glucosamine, the subsequent numbers represent the number of monosaccharide in these predicted components |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
中科荣信(苏州)生物科技有限公司. 一种里氏木霉几丁质酶及其制备方法和应用: 中国, 2017106305187. 2017-07-28[2018-05-15]. .
Zhongke Runxin (Suzhou) Biological Technology Co. Ltd. Preparation method and application of Trichoderma reesei chitinase:Chinese, 2017106305187. 2017-07-28[2018-05-15]. .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
程功, 任立世, 焦思明 , 等. 纤维素酶制备低脱乙酰度壳寡糖及其组成分析. 食品科技, 2018,43(4):189-193.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。
/
〈 |
|
〉 |