Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (7): 71-78    DOI: 10.13523/j.cb.20190710
技术与方法     
氨基载体共价结合固定化海洋假丝酵母脂肪酶 *
朱衡1,2,林海蛟1,2,张继福3,张云1,孙爱君1,胡云峰1,**()
1 中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室 广州 510301
2 中国科学院大学 北京 100049
3 广东省中医院 广州 510120
Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier
Heng ZHU1,2,Hai-jiao LIN1,2,Ji-fu ZHANG3,Yun ZHANG1,Ai-jun SUN1,Yun-feng HU1,**()
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
2 University of Chinese Academy of Sciences,Beijing 100049,China
3 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120,China
 全文: PDF(1041 KB)   HTML
摘要:

共价结合法是重要的工业酶固定化方法,利用稳定的共价键固定化工业酶,在载体和酶间形成多点共价连接,可以制备稳定性较好的固定化酶,更具有实际应用价值。利用氨基载体共价结合固定化海洋假丝酵母脂肪酶,采用较为廉价的戊二醛进行辅助交联,通过单因素和正交试验,确定最佳固定化条件为:25℃、pH5.0、0.1%戊二醛、0.25g载体、交联0.5h、固定化1h、加酶量为800U,最终得到的固定化酶酶活达到83.01U/g。固定化脂肪酶的最适pH较游离酶向碱性方向偏移,最适反应温度提高10℃,固定化酶的热稳定性和酸碱稳定性比游离酶好且重复使用性和储存稳定性明显优于游离酶。同时发现交联剂是制备固定化脂肪酶的重要因素,因此探索新型交联剂对于固定化效果的提高具有重要意义,为海洋假丝酵母脂肪酶的固定化工艺技术和工业应用奠定了良好基础。

关键词: 氨基载体脂肪酶戊二醛共价交联固定化酶    
Abstract:

Covalent binding is one important immobilization method of industrial enzyme, which uses stable covalent bonds to immobilize industrial enzymes, creates multi-point covalent connections between carrier and enzyme, and prepares immobilized enzymes with good stability and possesses practical application value. Marine Candida rugosa lipase was immobilized using amino carrier through covalent binding method and relative inexpensive glutaraldehyde was used as the crosslinking reagent. By using single factor and orthogonal experiment, the optimal immobilization conditions were determined as follows:25℃, pH5.0,0.1% glutaraldehyde,0.25g carrier, crosslinked 0.5h,immobilization time 1h, enzyme loading 800U, with the final obtained enzyme activity being 83.01U/g. Compared with free enzyme, the optimal pH of immobilized lipase was shifted to alkaline direction, the optimal reaction temperature was increased by 10℃, the thermal stability and acid-alkali stability of immobilized enzyme were better than that of free enzyme, and the reusability and storage stability were better than that of free enzyme. Meanwhile, crosslinking agent was found to be an important factor in the preparation of immobilized lipase. Thus it is of great significance to explore new crosslinking agent to improve immobilization effect. A good foundation for the immobilization technique and industrial application of marine candida rugosa lipase were laid.

Key words: Amino carrier    Lipase    Glutaraldehyde    Covalent crosslinking    Immobilized enzyme
收稿日期: 2018-12-29 出版日期: 2019-08-05
ZTFLH:  Q814.2  
基金资助: * 广东省海洋渔业科技攻关与研发方向项目(A201701C12);中国科学院战略性先导科技专项(XDA11030404);中国科学院“科学”号高端用户项目(KEXUE2018G05);广东省自然科学基金资助项目(2018A030313151)
通讯作者: 胡云峰     E-mail: yunfeng.hu@scsio.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱衡
林海蛟
张继福
张云
孙爱君
胡云峰

引用本文:

朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.

Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier. China Biotechnology, 2019, 39(7): 71-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190710        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I7/71

图1  脂肪酶固定化条件的优化
图2  固定化酶与游离酶酶学性质表征
序号 载体量(g) 固定化时间(h) 温度(℃) pH 酶活(U/g) 相对酶活(%)
1 0.25 1 25 5 83.010 752 9 100
2 0.25 2 30 6 59.704 299 32 71.923 57
3 0.25 3 35 7 35.725 805 37 43.037 56
4 0.5 1 30 7 48.413 977 89 58.322 54
5 0.5 2 35 5 38.360 214 51 46.211 14
6 0.5 3 25 6 51.881 718 44 62.5
7 0.75 1 35 6 58.602 152 16 70.595 86
8 0.75 2 25 7 45.000 000 69 54.209 85
9 0.75 3 30 5 47.338 710 9 57.027 2
K1 178.440 9 190.026 9 179.892 5 170.188 2
K2 138.655 9 143.064 5 155.457 168.709 7
K3 150.940 9 134.946 2 132.688 2 129.139 8
R 27.499 99 55.080 65 47.204 3 41.048 39
表1  脂肪酶固定化条件优化正交试验结果与分析
[1] 李丽娟, 马贵平, 赵林果 . 固定化酶载体研究进展. 中国生物工程杂志, 2015,35(11):105-113.
Li L J, Ma G P, Zhao L G . Research progress of immobilized enzyme carrier. China Biotechnology, 2015,35(11):105-113.
[2] 魏雪, 孙丽超, 李淑英 , 等. 脂肪酶的固定化及其在食品领域的应用. 生物技术通报, 2016,32(11):59-64.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.008
Wei X, Sun L C, Li S Y , et al. Immobilization of lipase and its application in food field. Biotechnology Bulletin, 2016,32(11):59-64.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.008
[3] 张洪真 . 海绵共附生微生物脂肪酶产生菌筛选、培养基优化、酶学性质及基因克隆研究. 上海:上海交通大学, 2008.
Zhang H Z . Screening,optimization of medium,property and gene cloning of lipase from bacteria associated with marine sponge. Shanghai:Shanghai Jiaotong University, 2008.
[4] 冯超, 蒋丽娟, 黎继烈 , 等. 固定化脂肪酶研究进展. 食品工业科技, 2011,32(2):373-375,378.
Feng C, Jiang L J, Ji J J , et al. Research progress in lipase immobilization. Science and Technology of Food Industry, 2011,32(2):373-375,378.
[5] Cheng J, Zhuang W, Tang C L , et al. Efficient immobilization of AGE and NAL enzymes onto functional amino resin as recyclable and high-performance biocatalyst. Springer Berlin Heidelberg, 2017,40(3):331-340.
[6] 游金坤, 余旭亚, 赵鹏 . 吸附法固定化酶的研究进展. 化学工程, 2012,40(4):1-5.
You J K, Yu X Y, Zhao P . Progress and trend of adsorption-based enzyme immobilization. Chemicall Engineering( China), 2012,40(4):1-5.
[7] Azevedo A M, Vojinović V, Cabral J M S , et al. Operational stability of immobilised horseradish peroxidase in mini-packed bed bioreactors. Elsevier B V, 2004,28(2):121-128.
[8] Ding L, Yao Z H, Li T , et al. Synthesis of macroporous polymer carrier and immobilization of papain. Iranian Polymer Journal, 2003,12(6):491-495.
[9] 高贵, 韩四平, 王智 , 等. 国内脂肪酶研究状况分析. 生物技术通讯, 2003,14(6):543-545.
Gao G, Han S P, Wang Z , et al. Analysis of lipase research situation in China. Letters in Biotechnology, 2003,14(6):543-545.
[10] Jakub Z, Anne S.M, Teofil J . et al. A general overview of support materials for enzyme immobilization:characteristics,properties,practical utility. MDPI, 2018,8(2):1-27.
[11] 尹春丽, 曹珊珊, 许乐 , 等. 氨基树脂固定化S-腺苷甲硫氨酸合成酶的研究. 化学与生物工程, 2014,31(9):17-20.
Yin C L, Cao S S, Xu L , et al. Reseach of the immobilized enzyme of s-adenosine methionine by amino resin. Chemical and Bioengineering, 2014,31(9):17-20.
[12] 张丰华, 孙宁, 张伟 , 等. 环氧基和氨基树脂固定化β-半乳糖苷酶的比较研究. 中国农业科技导报, 2014,16(5):47-52.
Zhang F N, Sun N, Zhang W , et al. Comparison of epoxy and amino resin carrier in immobilization of β-galactosidase. Journal of Agricultural Science and Technology, 2014,16(5):47-52.
[13] Li R Y, Fu G M, Liu C M , et al. Tannase immobilisation by amino-functionalised magnetic Fe3O4 -chitosan nanoparticles and its application in tea infusion. International Journal of Biological Macromolecules, 2018,114:1134-1143.
doi: 10.1016/j.ijbiomac.2018.03.077
[14] Huang J, Liu C, Xiao H Y , et al. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. International Journal of Nanomedicine, 2008,2(4):84-775.
[15] Adinarayana K, Iraj G, Susana C , et al. Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 2008,43(2):169-178.
doi: 10.1016/j.procbio.2007.11.009
[16] Katja G, Anke K, Thomas M , et al. Novel immobilization routes for the covalent binding of an alcohol dehydrogenase from rhodococcus ruber DSM 44541. Tetrahedron: Asymmetry, 2008,19(10):1171-1173.
doi: 10.1016/j.tetasy.2008.04.034
[17] Dae Y K, Joon S R . A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. Jaocs, 1986,63(1):89-92.
doi: 10.1007/BF02676129
[18] 李晔 . 酶的固定化及其应用. 分子催化, 2008,22(1):86-96.
Li Y . Immobilization of enzymes and their applications. Journal of Molecular Catalysis (China), 2008,22(1):86-96.
[19] Prlainovic N Z, Knezevic-Jugovic Z D, Mijin D Z , et al. Immobilization of lipase from candida rugosa on sepabeads(?): the effect of lipase oxidation by periodates. Bioprocess and Biosystems Engineering, 2011,34(7):10-803.
[20] 闻臻臻 . 假丝酵母产脂肪酶固定化研究. 杭州:浙江工业大学, 2011.
Wen Z Z . The immobilization of candida lipase. Hangzhou: Zhejiang University of Technology, 2011.
[21] 罗文, 谭天伟, 袁振宏 , 等. 多孔玻璃珠固定化脂肪酶及其催化合成生物柴油. 现代化工, 2007,27(11):40-42.
Luo W, Tan T W, Yuan Z H , et al. Immobilization of lipase by controlled pore glass and its applicationin biodiesel synthesis. Modern Chemical Industry, 2007,27(11):40-42.
[22] Zang X Z, Xie W L . Enzymatic interesterification of soybean oil and methyl stearate blends using lipase immobilized on magnetic Fe3O4/SBA-15 composites as a biocatalyst. Journal of Oleo Science, 2014,63(10):1027-1034.
doi: 10.5650/jos.ess14089
[23] Mohammad K, Mohammad K, Ayyoob A . Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures. Biochemical Engineering Journal, 2013,79(2013):267-273.
doi: 10.1016/j.bej.2013.09.001
[1] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[2] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[3] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[4] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[5] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[6] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[7] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[8] 林海蛟,张继福,张云,孙爱君,胡云峰. 添加剂对大孔吸附树脂固定化脂肪酶的影响 *[J]. 中国生物工程杂志, 2019, 39(4): 38-51.
[9] 石红璆,查代明,张炳火,李汉全. 全细胞脂肪酶研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 51-58.
[10] 徐珊,李任强,张继福,张云,孙爱君,胡云峰. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶 *[J]. 中国生物工程杂志, 2017, 37(12): 77-83.
[11] 曹莹莹, 邓盾, 张云, 孙爱君, 夏方亮, 胡云峰. 南海深海新颖低温脂肪酶的克隆、表达及酶学性质鉴定[J]. 中国生物工程杂志, 2016, 36(3): 43-52.
[12] 司洪宇, 王丙莲, 梁晓辉, 张晓东. 酶电极法快速测定甘油含量的研究[J]. 中国生物工程杂志, 2016, 36(12): 79-85.
[13] 周勇, 徐刚, 杨立荣, 吴坚平. 信号肽优化在枯草芽孢杆菌体系中对脂肪酶LipS分泌表达的影响[J]. 中国生物工程杂志, 2015, 35(9): 42-49.
[14] 查代明, 张炳火, 李汉全, 闫云君. 假单胞菌属脂肪酶的分子生物学研究进展[J]. 中国生物工程杂志, 2015, 35(9): 114-121.
[15] 李丽娟, 马贵平, 赵林果. 固定化酶载体研究进展[J]. 中国生物工程杂志, 2015, 35(11): 105-113.