Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (08): 106-111    DOI: Q819
技术与方法     
响应面法优化自养小球藻产生物柴油油脂
郑洪立1,高振1**,黄和1,2,纪晓俊1,白跃华3,李文琦3
1.南京工业大学生物与制药工程学院 南京 210009
2.材料化学工程国家重点实验室 南京 210009
3.中国石油天然气股份有限公司石油化工研究院 北京 100029
Optimization of Autotrophic Cultivation of Lipids Production for Biodiesel by Chlorella vulgaris with Response Surface Methodology
ZHENG Hong-li1,GAO Zhen1,HUANG He1,2,JI Xiao-jun1,BAI Yue-hua3,LI Wen-qi3
1.College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
2.State Key Laboratory of MaterialsOriented Chemical Engineering, Nanjing 210009, China
3.Petroleum Research Institute, China National Petroleum Corporation, Beijing 100029, China
 全文: PDF(944 KB)   HTML
摘要:

利用响应面法对小球藻(Chlorella vulgaris)在2 L气升式生物反应器中对自养产生物柴油油脂的培养条件进行了优化。首先用Plackett-Burman方法对10 个相关影响因素的效应进行评价并筛选出对产油有显著影响的3 个因素:KNO3浓度、温度和CO2浓度;再用最陡爬坡实验逼近最大产油区域;最后由中心组合实验及响应面分析确定了影响产油主要因素的最佳条件为:KNO3浓度0.31g/L,温度26.5 ℃,CO2浓度6.80%,最高产油量达到0.42 g/L,比优化前提高了近2 倍。优化后,在10 L气升式生物反应器中进行了扩大培养。

关键词: 小球藻培养条件响应面法生物柴油油脂    
Abstract:

Response surface methodology was used to optimize the autotrophic cultivation conditions for lipids production by Chlorella vulgaris in a 2-L airlift photobioreactor. In the first optimization step, a Plackett-Burman design was used to evaluate the influence of ten related factors and it was found out that KNO3 concentration, temperature and CO2 concentration influenced lipids production significantly. Subsequently, the path of steepest ascent was used to approach the optimal region of the cultivation conditions. In the third step, KNO3 concentration, temperature and CO2 concentration were further optimized using central composite designs and response surface analysis and the optimum conditions were that KN03 concentration was 0.31 g/L, temperature was 26.5 ℃ and CO2 concentration was 6.80%. Under optimum conditions, the lipid yield was 0.42 g/L and it was increased by two times than that under the conditions before optimized. Chlorella vulgaris was cultured in a 10-L airlift photobioreactor under optimum conditions.

Key words: Chlorella vulgaris    Cultivation conditions    Response surface    Methodology    BiodieselLipids
收稿日期: 2010-04-21 出版日期: 2010-08-25
基金资助:

国家自然科学基金(20936002)、国家“973”计划(2007CB707805, 2009CB724700)、江苏省六大人才高峰项目 (2008)、江苏省高校科研成果产业化推进项目(2009)资助项目

通讯作者: 高振     E-mail: gaozhen@njut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑洪立
高振
黄和
纪晓俊
白跃华
李文琦

引用本文:

郑洪立 高振 黄和 纪晓俊 白跃华 李文琦. 响应面法优化自养小球藻产生物柴油油脂[J]. 中国生物工程杂志, 2010, 30(08): 106-111.

ZHENG Hong-Li, GAO Zhen, HUANG He, JI Xiao-Dun, BAI Ti-Hua, LI Wen-Qi. Optimization of Autotrophic Cultivation of Lipids Production for Biodiesel by Chlorella vulgaris with Response Surface Methodology. China Biotechnology, 2010, 30(08): 106-111.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/Q819        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I08/106

[1] 郑洪立,张齐,马小琛,等.产生物柴油微藻培养研究进展.中国生物工程杂志,2009, 29(3): 110116. Zheng H L, Zhang Q, Ma X C, et al. China Biotechnol, 2009, 29(3): 110116. 
[2] 黄和,郑洪立,高振,等.一种产生物柴油微藻的规模化收获方法及其装置.中国,CN101586078. 20091125. Huang H, Zheng H L, Gao Z, et al. China, CN101586078. 20091125. 
[3] Yusuf C. Biodiesel from microalgae. Biotechnol Adv, 2007, 25: 294306. 
[4] Liliana R, Graziella C Z, Niccolò B, et al. Microalgae for oil:strain selection,induction of lipid synthesis and outdoor mass cultivation in a lowcost photobioreactor. Biotechnol and Bioeng, 2009, 102: 100112. 
[5] 谯顺彬,迟海洋,张奕婷,等。螺旋藻混合营养培养基响应面法的优化研究. 食品科学,2009,30(7): 109114. Qiao S B,Chi H Y, Zhang Y T, et al. Food Science, 2009,30(7): 109114. 
[6] Dyer W M, Bligh E G. A rapid method of lipid extraction and purification. Can J Biochem Physiol, 1959, 37: 911917. 
[7] Converti A, Casazza A A, Ortiz E Y, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng and Processing, 2009, 48: 11461151. 
[8] Davies O L, George E P, Lewis R C.The Design and Analysis of Industrial Experiments. 2nd ed. London: Longman Group Limited, 1978.136152. 
[9] Montgomery D C. Design and Analysis of Experiments. 3rd ed. New York: John Wiley & Sons, 1991. 216247. 
[10] Yoo C, Jun S Y, Lee J Y, et al. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technol, 2010, 101: S71S74. 
[11] 曾文炉,赵飞飞,曹照根,等。利用响应面方法优化转小鼠金属硫蛋白I 基因聚球藻 7002的培养基成分。生物工程学报,2008,24(1):130136. Zeng W L, Zhao F F, Cao Z G, et al. Chinese Journal of Biotechnology, 2008, 24(1):130136. 
[12] Renaud S M, Thinh L V, Lambrinidis G, et al. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 2002, 211: 195214. 
[13] Pe′rez E B, Pina I C, Rodriguez L P. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochemical Engineering Journal,2008, 40: 520525. 
[14] Rao A R, Dayananda C, Sarada R, et al. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technol, 2007, 98: 560564. 
[15] Zhang D H, Lee Y K, Ng M L, et al. Composition and accumulation of secondary carotenoids in Chlorococcum sp. J Appl Phycol, 1997, 9:147155. 
[16] 刘志媛,王广策.铁促进海水小球藻油脂积累的动态过程.海洋科学,2008,32(11):5659. Liu Z Y,Wang G C. Marine Sciences, 2008,32(11):5659. 
[17] Abe F, Kato C,Horikoshi K. Pressureregulated metabolism in Microorganisms. Trends in Microbiology, 1999, 7(11):447453.

[1] 卫治金,李晓,王皓楠,尹永浩,郗丽君,葛保胜. 小球藻与固氮菌Mesorhizobium sp.共培养对小球藻生长和油脂积累的促进效果 *[J]. 中国生物工程杂志, 2019, 39(7): 56-64.
[2] 左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
[3] 周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.
[4] 夏乾竣, 王飞, 李迅. 解脂耶罗维亚酵母产油脂的研究进展[J]. 中国生物工程杂志, 2017, 37(3): 99-105.
[5] 韦璇, 郝雅荞, Susanna Leong Su Jan, 吴言, 柳叶飞, 赵洪新. Saccharomyces cerevisiaeYarrowia lipolytica对自由饱和脂肪酸的选择性吸收及胞内积累特性研究[J]. 中国生物工程杂志, 2017, 37(2): 63-73.
[6] 王雅南, 沈宏伟, 杨晓兵, 赵宗保. 不同营养元素限制对圆红冬胞酵母油脂生产的影响[J]. 中国生物工程杂志, 2016, 36(11): 16-22.
[7] 车绕琼, 黄力, 王琳, 赵鹏, 李涛, 余旭亚. 葡萄糖对单针藻异养、兼养生长及油脂合成的影响[J]. 中国生物工程杂志, 2015, 35(11): 46-51.
[8] 杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.
[9] 黎亮, 王泽建, 郭美锦, 储炬, 庄英萍, 张嗣良. 头孢菌素C产生菌的诱变育种及培养基优化[J]. 中国生物工程杂志, 2014, 34(8): 61-66.
[10] 韩启灿, 霍光华, 罗桂祥. 一株病原拮抗野生菌株的筛选、鉴定及其发酵工艺优化[J]. 中国生物工程杂志, 2014, 34(5): 66-74.
[11] 高雪丽, 吴坚平, 徐刚, 杨立荣. 侧钩木霉的分离、鉴定及产孢条件优化[J]. 中国生物工程杂志, 2014, 34(2): 84-92.
[12] 雷学青, 卢哲, 高保燕, 张文源, 李爱芬, 张成武. 利用平板反应器大量培养高产油绿藻——尖状栅藻的生长和油脂积累规律[J]. 中国生物工程杂志, 2014, 34(11): 91-99.
[13] 许继飞, 张艳芬, 赵桂琦, 赵吉. 产油酵母利用不同基质累积油脂的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 111-118.
[14] 王美玲, 薛超友, 赵方龙, 卢文玉. 混合油脂补料发酵提高多杀菌素的产量[J]. 中国生物工程杂志, 2013, 33(8): 56-60.
[15] 王丹, 郑洪立, 纪晓俊, 高振. 响应面法对小球藻Chlorella zofingiensis高产虾青素条件的优化[J]. 中国生物工程杂志, 2013, 33(7): 71-81.