Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 42-51    DOI: 10.13523/j.cb.2103022
技术与方法     
利用基因组改组技术提高短杆菌素产量及其培养条件优化*
王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新()
南京农业大学食品科学技术学院 南京 210095
Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions
WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin()
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
 全文: PDF(1959 KB)   HTML
摘要:

短杆菌素是一种广谱抗菌肽,对细菌和真菌均有较好的抑制作用,具有潜在的抗生素替代价值。通过对侧孢短芽孢杆菌fmb70进行紫外诱变、亚硝基胍诱变、常压室温等离子体诱变,获得3株短杆菌素产量提高的诱变菌株。随后以诱变菌株为亲本进行两轮基因组改组,获得融合子F2-24,其短杆菌素产量为(340.5±16.35) μg/mL,是野生菌株fmb70短杆菌素产量的1.92倍。融合子传代5代后,该菌株短杆菌素产量无明显差异,说明菌株稳定性良好。最后对该菌株产短杆菌素的培养基和发酵条件进行优化,优化后的培养基为:4%蔗糖、2%牛肉膏、0.5%氯化镁,发酵温度30℃、培养24 h、培养基初始pH6.0。优化后的短杆菌素产量可达(442.45±9.58)μg/mL,是初始培养条件的2.50倍。

关键词: 短杆菌素侧孢短芽孢杆菌基因组改组培养基优化    
Abstract:

Brevibacillin, a broad-spectrum antimicrobial peptide, has shown strong antibacterial effect on bacteria and fungi, which can be regard as a kind of potential substitute for antibiotics. The wild strain Brevibacillus laterosporus was carried out the conventional mutagenesis techniques including UV mutagenesis, atmospheric and room temperature plasma mutagenesis and nitrosoguanidine mutagenesis to obtain four mutant strains. After two rounds of genome shuffling, strain F2-24 was obtained, and the yield of brevibacillin reached (340.5±16.35) μg/mL, which was 1.92-fold than that of wild strain fmb70. Furthermore, the fusion strain F2-24 possessed great stability after five generations. Finally, the fermentation process of fusion strain F2-24 was optimized. The results of the best carbon source, nitrogen source and inorganic salt ion was sucrose, beef extract and Mg 2+, respectively and the addition dose was 4%, 2% and 0.5%, respectively. The yield of brevibacillin was significantly enhanced via fermentation at 30℃ pH6.0 for 24 h, and meanwhile, the results suggested that the yield of brevibacillin was remarkably improved by a series of optimization and the yield reached (442.45±9.58) μg/mL, which was 2.50-fold than that produced by wild strain fmb70.

Key words: Brevibacillin    Brevibacillus laterosporus    Genome shuffling    Medium optimization
收稿日期: 2021-03-15 出版日期: 2021-08-31
ZTFLH:  Q933  
基金资助: * 国家自然科学基金资助项目(31771948)
通讯作者: 陆兆新     E-mail: fmb@njau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王晓洁
孟凡强
周立邦
吕凤霞
别小妹
赵海珍
陆兆新

引用本文:

王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.

WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions. China Biotechnology, 2021, 41(8): 42-51.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103022        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/42

时间/min 流动相A/% 流动相B/%
0 30 70
5 30 70
20 70 30
20.1 30 70
23 30 70
表1  HPLC检测短杆菌素程序
因素 水平
1 2 3
蔗糖/% 3 4 5
牛肉浸膏/% 2 3 4
镁离子/% 0.5 1 2
表2  培养基主要成分正交试验因素水平
项目 紫外处理 ARTP处理 NTG处理
处理时间/浓度 15 s 10 s 0.1 mg/mL
正突变率/% 43 31 22
短杆菌素增加/% 59.9±8.7 61.2±4.7 38.5±7.6
表3  传统理化的条件及正突变率
图1  不同条件对原生质体形成与再生的影响
图2  紫外线照射和热处理对原生质体存活率的影响
图3  不同条件对原生质体融合率的影响
图4  第一轮基因组改组融合子的筛选
菌株编号 发酵液中短杆菌素
含量/(μg/mL)
传代5代后发酵液中短
杆菌素含量/(μg/mL)
fmb70 186.7 166.2±9.7a
F2-24 399.6 347.7±14.2b
表4  第二轮基因组改组融合子产量稳定性分析
图5  不同碳源对短杆菌素产量的影响
图6  不同氮源对短杆菌素产量的影响
图7  不同无机盐离子对短杆菌素产量的影响
试验编号 蔗糖 牛肉浸膏 Mg2+ 发酵液中短杆菌素含量/(μg/mL)
1 1 1 1 290.16±7.32
2 1 2 2 274.14±5.44
3 1 3 3 70.53±2.10
4 2 1 2 327.48±31.39
5 2 2 3 124.40±14.86
6 2 3 1 257.88±5.96
7 3 1 3 117.85±20.18
8 3 2 1 245.54±17.14
9 3 3 2 156.68±25.23
均值1 211.609 245.170 264.529
均值2 236.592 214.694 252.769
均值3 173.359 161.696 104.262
极差 63.233 83.474 160.267
表5  培养基主要成分正交试验结果
图8  不同发酵条件对短杆菌素产量的影响
图9  野生菌株与融合子F2-24的发酵验证
[1] 刘萍萍, 闫艳春. 微生物农药研究进展. 山东农业科学, 2005, 37(2):78-80.
Liu P P, Yan Y C. Research progress of microbial pesticides. Shandong Agricultural Sciences, 2005, 37(2):78-80.
[2] 李明通, 孟凡强, 周立邦, 等. 生姜根腐病的病原菌鉴定及抗菌脂肽的防治效果. 南京农业大学学报, 2020, 43(6):1134-1142.
Li M T, Meng F Q, Zhou L B, et al. Identification of the pathogen of ginger root rot and the control effeciency of antifungal lipopeptides. Journal of Nanjing Agricultural University, 2020, 43(6):1134-1142.
[3] Jiang H X, Wang X H, Xiao C Z, et al. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World Journal of Microbiology and Biotechnology, 2015, 31(10):1605-1618.
doi: 10.1007/s11274-015-1912-4
[4] Prasanna L, Eijsink V G H, Meadow R, et al. EA novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Applied Microbiology and Biotechnology, 2013, 97(4):1601-1611.
doi: 10.1007/s00253-012-4019-y pmid: 22543421
[5] 马俊美. 侧孢短芽孢杆菌抗菌肽的结构及其特性研究. 石家庄: 河北科技大学, 2015.
Ma J M. Research on structure and characterization of antimicrobial peptides from Brevibacillus laterosporus. Shijiazhuang: Hebei University of Science and Technology, 2015.
[6] Yang X, Huang E, Yuan C H, et al. Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant gram-positive bacteria. Applied and Environmental Microbiology, 2016, 82(9):2763-2772.
doi: 10.1128/AEM.00315-16 pmid: 26921428
[7] Yang X, Huang E, Yousef A E. Brevibacillin, a cationic lipopeptide that binds to lipoteichoic acid and subsequently disrupts cytoplasmic membrane of Staphylococcus aureus. Microbiological Research, 2017, 195:18-23.
doi: S0944-5013(16)30636-X pmid: 28024522
[8] 谭才邓, 朱美娟, 杜淑霞, 等. 抑菌试验中抑菌圈法的比较研究. 食品工业, 2016, 37(11):122-125.
Tan C D, Zhu M J, Du S X, et al. Study on the inhibition zone method in antimicrobial test. The Food Industry, 2016, 37(11):122-125.
[9] Wu Y B, Zhou L B, Lu F X, et al. Discovery of a novel antimicrobial lipopeptide, brevibacillin V, from Brevibacillus laterosporus fmb70 and its application on the preservation of skim milk. Journal of Agricultural and Food Chemistry, 2019, 67(45):12452-12460.
doi: 10.1021/acs.jafc.9b04113
[10] 朱平, 李焕娄. 微生物原生质体灭活及其在育种中的应用. 国外医药(抗生素分册), 1990, 11(6):409-413.
Zhu P, Li H L. Inactivation of microbial protoplasts and its application in breeding. World Notes on Antibiotics, 1990, 11(6):409-413.
[11] 王娟娟, 贾彦军. 微生物原生质体融合方法的综述. 畜牧兽医科技信息, 2005(10):17-19.
Wang J J, Jia Y J. Review of microbial protoplast fusion methods. Scientific Information of Animal Husbamdry Veterinary Mecicine, 2005(10):17-19.
[12] 颜佳, 张立钊, 熊香元, 等. 微生物原生质体融合育种技术及其在发酵食品生产中的应用. 食品安全质量检测学报, 2020, 11(22):8455-8462.
Yan J, Zhang L Z, Xiong X Y, et al. Microbial protoplast fusion breeding technology and its application in fermented food production. Journal of Food Safety & Quality, 2020, 11(22):8455-8462.
[13] Zhao P C, Xue Y, Gao W N, et al. Bacillaceae-derived peptide antibiotics since 2000. Peptides, 2018, 101:10-16.
doi: 10.1016/j.peptides.2017.12.018
[14] Zhang Y X, Perry K, Vinci V A, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872):644-646.
doi: 10.1038/415644a
[15] 高钰淇. 嗜酸乳杆菌NX2-6类细菌素高产菌株选育及应用的研究. 南京: 南京农业大学, 2015.
Gao Y Q. Study on breeding and application of high bacteriocin producing of Lactobacillus acidophilus NX2-6. Nanjing: Nanjing Agricultural University, 2015.
[16] 李伟. Bacillomycin D高产菌株的选育及其发酵工艺. 南京: 南京农业大学, 2018.
Li W. Breeding of high-yield strains of bacillomycin D and fermentation process. Nanjing: Nanjing Agricultural University, 2018.
[17] 贾锐. 高产杆菌肽地衣芽胞杆菌的鉴定与选育. 南京: 南京农业大学, 2016.
Jia R. Breeding of a high-yield strain from Bacillus licheniformis for bacitracin A. Nanjing: Nanjing Agricultural University, 2016.
[18] Magocha T A, Zabed H, Yang M M, et al. Improvement of industrially important microbial strains by genome shuffling: Current status and future prospects. Bioresource Technology, 2018, 257:281-289.
doi: 10.1016/j.biortech.2018.02.118
[19] 赵君峰. 淀粉液化芽孢杆菌ES-2-4基因组改组提高脂肽产量及其突变菌株差异蛋白组学分析. 南京: 南京农业大学, 2012.
Zhao J F. Genome shuffling of Bacillus amyloliquefaciens ES-2-4for improving lipopeptide yield and differential proteomics analysis in its mutant strain. Nanjing: Nanjing Agricultural University, 2012.
[20] Huang Q G, Zeng B D, Liang L, et al. Genome shuffling and high-throughput screening of Brevibacterium flavum MDV1 for enhanced L-valine production. World Journal of Microbiology & Biotechnology, 2018, 34(8):121.
doi: 10.1007/s11274-018-2502-z
[21] 王文静, 李丹毅, 谢磊睿, 等. 海洋来源真菌Ascotricha sp.J-M-5次级代谢化学多样性初探. 中国药学会海洋药物专业委员会第十一届海洋药物学术年会论文集. 海口: 2013: 71-74.
Wang W J, Li D Y, Xie L R, et al. Preliminary exploration into the chemo-diversity of secondary metabolism of a marine-derived fungus Ascotricha sp.ZJ-M-5. Proceedings of the 11th Annual Meeting of marine drugs, marine drug committee, Chinese Pharmaceutical Association. Haikou: 2013: 71-74
[22] 潘丽军, 付萍, 郑志, 等. 米根霉乙醇脱氢酶突变株的筛选及其锌镁离子的调控研究. 微生物学报, 2006, 46(4):586-590.
Pan L J, Fu P, Zheng Z, et al. Screening of a low alcohol dehydrogenase activity mutant of Rhizopus oryzae and the regulation of Zn2+and Mg2+. Acta Microbiologica Sinica, 2006, 46(4):586-590.
[1] 纪海姣,李文蕾,黄瑞晶,李剑,徐寒梅. 抗CD20抗体高产细胞株的筛选及质量评估[J]. 中国生物工程杂志, 2018, 38(8): 34-40.
[2] 梁剑光, 贾佳红, 吴俊伟, 朱洁. 烟草节杆菌肌酐酶发酵培养基优化[J]. 中国生物工程杂志, 2015, 35(8): 90-95.
[3] 李国坤, 高向东, 徐晨. 哺乳动物细胞表达系统研究进展[J]. 中国生物工程杂志, 2014, 34(1): 95-100.
[4] 薛正莲, 刘阳, 王洲, 马琦亚, 赵世光, 苏燕南. 基因组改组选育产酯化酶地衣芽孢杆菌[J]. 中国生物工程杂志, 2013, 33(8): 45-50.
[5] 刘伯宁. 用于重组抗体生产的细胞大规模培养技术[J]. 中国生物工程杂志, 2013, 33(7): 103-111.
[6] 周广麒, 马蓬勃, 刘俏, 权春善, 范圣第. 解淀粉芽孢杆菌Q-426培养基优化及抑菌活性的预测[J]. 中国生物工程杂志, 2013, 33(11): 21-26.
[7] 王洲, 薛正莲, 马琦亚, 苏燕南, 赵世光. 基因组改组选育磷脂酶A1生产菌[J]. 中国生物工程杂志, 2013, 33(10): 59-66.
[8] 陈杰, 魏鸿刚, 罗远婵, 张道敬, 李淑兰, 田黎, 李元广. 海洋芽胞杆菌B-9987产新型抗菌环脂肽Marinhysin A的培养基优化[J]. 中国生物工程杂志, 2013, 33(1): 84-89.
[9] 阮文兵 陈必钦 陈素华 陈秉梅 许小平. 响应面分析法优化(R)-扁桃酸发酵培养基[J]. 中国生物工程杂志, 2010, 30(08): 112-117.
[10] 郑剑,吴琳琳,李敏. 乳糖诱导高分子量重组蛛丝蛋白发酵培养基优化[J]. 中国生物工程杂志, 2008, 28(12): 41-46.