tbx2是早期心脏发育的关键基因。为进一步探究其对房室间隔(AVC)发育的影响,研究利用CRISPR/Cas9介导的基因敲除技术,成功构建了斑马鱼tbx2b突变体。通过T7E1酶切对其F0进行敲除效率检测,结果显示平均敲除效率约为57.5%。F1进一步筛选获得tbx2b杂合突变体,测序结果显示突变类型为11 bp碱基缺失的移码突变。tbx2b杂合子内交获得纯合子,tbx2b纯合突变体在5 dpf死亡并出现早期心脏环化异常表型。斑马鱼整胚原位杂交实验显示在3 dpf tbx2b纯合突变体中, 心脏腔室分化特异性标志基因nppa、nppb表达上调并异位表达在AVC,而AVC发育关键基因has2的表达消失。高效构建tbx2b突变体并初探其对下游基因的影响,为后续深入研究tbx2b对心脏AVC发育的作用奠定了基础,同时加深了人们对早期心脏调控网络的认识。
目的:以角蛋白作为药物载体材料,制备智能响应性药物递送系统,研究其药物装载和释放性能。方法:利用去溶剂法制备角蛋白纳米颗粒(KNP),以罗丹明B(RB)和姜黄素(Cur)为亲水性和疏水性模式药物,制备载药KNP。利用钨灯丝扫描电镜(SEM)、动态光散射(DLS)、傅里叶变换红外光谱(FTIR)和药物体外释放实验等对KNP的尺寸、形貌、结构、载药和释药性能进行研究。结果:成功制备出粒径均一、约为300 nm 的KNP,能够装载亲水性和疏水性药物。载药颗粒在体外释放研究中表现出pH和氧化还原双重响应性。结论:利用去溶剂法,简便、安全地制备了分散性良好且具有pH和氧化还原双重响应性释放特性的角蛋白载药纳米颗粒,为角蛋白作为智能响应型药物递送载体的研究和应用提供了参考。
为了获得更为理想的皮肤创口修复敷料,在海藻酸钠(SA)和聚丙烯酰胺(PAM)水凝胶的基础上复合人发角蛋白(KTN),制得KTN/SA/PAM水凝胶皮肤敷料。用电子万能测试机、扫描电子显微镜等对其进行表征,结果显示,KTN/SA/PAM水凝胶皮肤敷料拉伸强度为42.41 kPa,弹性模量11.19 kPa,接近人体皮肤组织;与带血猪皮的黏附性可高达为5.1 kPa,2 h吸水率为144.3%,较好地满足了皮肤创口修复敷料的基本要求。进一步的大鼠皮肤创面修复实验显示,KTN/SA/PAM水凝胶皮肤敷料相对于市售创口贴和SA/PAM水凝胶具有更好的修复能力,创口皮肤组织切片组织学分析表明,经KTN/SA/PAM皮肤敷料处理后的创口处未成熟组织区域最小,胶原纤维排列最为整齐,14 d后,伤口愈合程度与正常皮肤几乎接近。预示KTN/SA/PAM皮肤敷料可能是一种较有前景的皮肤伤口修复敷料。
H2O2是一种重要的信号分子,参与植物体内多种生理代谢活动,但过量的H2O2破坏生物大分子,从而使细胞受到毒害。硫氧还蛋白过氧化物酶(thioredoxin peroxidase,Tpx)通过清除H2O2在保护植物免受氧化损伤方面起着重要作用。为进一步研究番茄Tpx基因(SlTpx)的功能,构建了番茄SlTpx原核表达载体,并诱导和纯化了SlTpx蛋白,发现该蛋白质大小约为21 kDa。为检测SlTpx的抗氧化功能,通过体外的混合功能氧化酶(MFO)实验、过氧化氢清除实验和SlTpx蛋白体外抗重金属和H2O2实验,证明SlTpx可以保护DNA不受有害活性氧切割,并且提高大肠杆菌抵抗重金属和H2O2胁迫的能力。为揭示SlTpx在植物中的功能和作用机制奠定基础。
目标:提供一种能够显著提高慢病毒稳定转染人多能干细胞的方法,并建立一种简便无损的转染细胞筛选方法。方法:在慢病毒转染人多能干细胞过程,分别比较添加与不添加Y-27632情况下细胞形态的动态变化规律,以及细胞不同形态下对慢病毒颗粒的摄入能力差异,优化建立高效的慢病毒转染方法。随后,设计并研制可视化的简便显微操作装置,探索在荧光显微镜辅助下挑取转染的阳性单克隆细胞建系的技术,建立较为简便的转染细胞纯化新方法。结果:正常培养的人多能干细胞(hESC、hiPSC),添加Y-27632后6 h集落形态发生明显变化,细胞呈现出明显长梭形,集落松弛,细胞表面积显著增加;去除后6 h集落恢复正常;常规培养的多能干细胞克隆,慢病毒主要倾向于进入集落外围或局部细胞;经Y-27632提前处理6 h,细胞集落松驰、表面积显著增加的多能干细胞,慢病毒能够较为均匀地感染集落外围与内部细胞,显著提高慢病毒转染效率。利用毛细玻璃管,自主设计制作了一款显微镜下可视化的细胞单集落挑选器件,在显微镜辅助下能够简便地进行阳性克隆细胞的挑选建系,从而在常规实验室即可完成,取代具有一定细胞损伤效应的嘌呤霉素筛选及需要专业设备的流式分选方法。结论:在慢病毒转染过程中,常规培养的hESC/iPSC集落较为致密,对慢病毒感染具有一定抵抗性;小分子化合物Y-27632使得hESC/iPSC克隆集落结构相对松散,表面积增加,显著提高了对慢病毒的易感性,提高了感染效率;成功设计了一种简便且对细胞无毒性的显微操作器件,在常规实验室条件下,可有效取代流式分选及药物筛选,实现细胞单克隆的挑选建系。
短杆菌素是一种广谱抗菌肽,对细菌和真菌均有较好的抑制作用,具有潜在的抗生素替代价值。通过对侧孢短芽孢杆菌fmb70进行紫外诱变、亚硝基胍诱变、常压室温等离子体诱变,获得3株短杆菌素产量提高的诱变菌株。随后以诱变菌株为亲本进行两轮基因组改组,获得融合子F2-24,其短杆菌素产量为(340.5±16.35) μg/mL,是野生菌株fmb70短杆菌素产量的1.92倍。融合子传代5代后,该菌株短杆菌素产量无明显差异,说明菌株稳定性良好。最后对该菌株产短杆菌素的培养基和发酵条件进行优化,优化后的培养基为:4%蔗糖、2%牛肉膏、0.5%氯化镁,发酵温度30℃、培养24 h、培养基初始pH6.0。优化后的短杆菌素产量可达(442.45±9.58)μg/mL,是初始培养条件的2.50倍。
基于慢病毒载体的体外基因治疗已在临床试验中取得良好的效果,有望治愈一些造血系统的单基因遗传病。通过提高靶细胞转导效率和减少转导中病毒载体量,基因治疗有效性、安全性和成本都可以得到改善。不同包膜糖蛋白伪型慢病毒载体通过与细胞膜表面的不同受体结合,促进病毒黏附和入胞,增强不同靶细胞的病毒转导效率。此外病毒转导增强剂可以在病毒进入细胞过程或进入后发挥作用,在提高转导效率的同时使靶转导基因在体内长期稳定表达。通过对这两类方法的总结回顾,旨在为慢病毒载体的转导效率提供新的优化策略,使基因治疗得到更广泛的应用。
长链非编码RNA(lncRNA)是一类转录本长度大于200 nt的RNA分子,编码蛋白质的功能有限,但其功能多样且复杂。已有研究报道lncRNA与肿瘤的发展进程密切相关,lncRNA可以通过不同方式参与细胞内生物学进程的调控,是潜在的癌症调节因子,其中,调节表观遗传修饰水平是其影响癌症进程的主要手段;癌症发病过程中细胞内存在着不同程度的表观遗传修饰,其主要为包括甲基化、乙酰化、磷酸化、糖基化、泛素化等修饰方式在内的DNA修饰、RNA修饰以及蛋白质的翻译后修饰,在癌症的不同阶段其修饰的异常程度不同,从而影响肿瘤发生的生物学进程。研究表明,lncRNA可以通过自身修饰或参与其他生物大分子的表观遗传修饰进程参与癌症的发生发展。因此,回顾了lncRNA所参与的表观遗传修饰形式和lncRNA在表观遗传修饰方面所起到的作用,并概述了lncRNA通过影响表观遗传修饰水平从而调控癌症进程的方法。旨在总结癌症细胞内表观遗传修饰方面所涉及lncRNA的研究进展,为癌症诊断和治疗提供潜在的靶标和生物学标志物。
病原菌的快速准确检测是实现疫情高效防控、疾病精准治疗、污染环境及时处置的关键。而现有的病原菌现场快速检测技术,主要以定性分析为主,假阳性/假阴性受到诟病,检测准确性仍有待提升,亟待发展基于新原理、新方法的病原菌快速检测技术。基于CRISPR(clustered regularly interspaced short palindromic repeats)的生物传感技术因具有高灵活性(对不同的基因靶点只需改变crRNA序列)、高特异性(单碱基分辨)、高灵敏(优于10-18 mol/L浓度)、可编程、可模块化、低成本、可在各种体外介质中高效稳定运行等独特优势,打破了传统分子诊断与检测技术的局限性,正在成为下一代病原菌检测技术的引领者。在该技术中,Cas效应蛋白被用作高特异性的序列识别元件,结合不同的生物传感机制,即可用于病原菌的高特异性快速灵敏检测。在总结CRISPR/Cas生物传感技术原理的基础上,综述了用于病原菌检测的CRISPR/Cas12和CRISPR/Cas13生物传感技术研究进展。通过阐述CRISPR/Cas生物传感技术在实际应用中面临的挑战,展望其未来的发展前景。
随着高通量测序技术的不断更新,可以在单个分子水平读取核苷酸序列的第三代测序技术迅速发展,纳米孔测序技术是其具有代表性的单分子测序技术,该技术通过检测DNA单链分子穿过纳米孔时引起的跨膜电流信号的变化,实现碱基识别。纳米孔测序仪在便携性、碱基读取速度、测序读段长度等方面较传统的第一代与第二代测序技术都有明显优势。随着纳米孔测序技术的不断发展成熟,与其配套的各种信号处理与生物信息处理工具也迅速涌现,碱基识别和模型仿真是其中两个较为关键的研究方向。首先介绍纳米孔测序基本原理与信号处理流程,探讨其目前面临的挑战,归纳近年来在碱基识别与纳米孔模型仿真两个方面的主要进展与发展趋势,并用实测数据比较了不同碱基识别方法的性能。继而搭建了纳米孔测序集成仿真平台,为信号处理算法的评估提供支撑。进一步,随着全球数据量的爆发式增长,DNA数据存储正成为未来非常有潜力的海量数据存储方式,采用纳米孔测序读出是一种非常有效的方法。总结了纳米孔测序技术在DNA数据存储中的应用进展,分析了其可行性。分析了基于纳米孔测序实现的人工染色体数据存储的快速读出方法,探讨了与实际测序数据结合的纳米孔测序读段仿真在DNA数据存储中的应用,为开发适合DNA数据存储的方案提供参考。
合成生物学技术采用工程化设计理念,对生物体进行有目标的设计、改造乃至重新合成,对重塑非自然功能的“人造生命”具有重要意义。噬菌体重组系统具有高效、精确和广谱适用性等特点,在基因工程、代谢工程以及生物治疗等合成生物学领域得到了广泛的应用。从基因电路、体内遗传改造和体外重组等方面全面阐述了噬菌体重组系统在合成生物学研究的现状及热点,对当前该系统的局限性进行了探讨,并就未来的研究和发展趋势进行了展望。
假单胞菌污染事件在临床就医和日常饮食中频发,屡次产生致病、致死等恶劣后果,有效抑制致病假单胞菌并降低其耐药性作为解决该问题的关键手段,是目前的研究重点。相关研究表明益生菌等天然活性成分对假单胞菌产生多方面影响,以应用范围最广的益生菌——乳杆菌为例,综合国内外最新研究进展,论述了乳杆菌对假单胞菌的生物膜结构、生长活性、生物毒性、黏附细胞表面能力及被假单胞菌感染后的小鼠等产生的影响。深入挖掘乳杆菌等益生菌及其代谢产物成分的作用机制,是防治假单胞菌等微生物污染和感染的关键。
γ-氨基丁酸(γ-aminobutyric acid,GABA)是一种极易溶于水的非蛋白质氨基酸,被广泛应用于食品和制药工业中,市场需求量极大。可通过化学合成法、植物富集法、微生物直接发酵法和生物转化法生产。近年来,因生物法合成GABA具有相对优势,受到研究者们的重视。对GABA的生产方法、生产GABA的微生物、微生物合成GABA的关键代谢途径和GAD酶的定向改造策略进行了论述。