Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 110-119    DOI: 10.13523/j.cb.2103038
综述     
生物法合成γ-氨基丁酸的研究策略*
张恒1,2,刘慧燕1,2,潘琳1,2,王红燕1,2,李晓芳1,2,王彤1,2,方海田1,2,**()
1 宁夏大学食品与葡萄酒学院 银川 750021
2 宁夏食品微生物应用技术与安全控制重点实验室 银川 750021
Research Strategy for Biosynthesis of Gamma Aminobutyric Acid
ZHANG Heng1,2,LIU Hui-yan1,2,PAN Lin1,2,WANG Hong-yan1,2,LI Xiao-fang1,2,WANG Tong1,2,FANG Hai-tian1,2,**()
1 School of Food and Wine, Ningxia University, Yinchuan 750021, China
2 Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China
 全文: PDF(1704 KB)   HTML
摘要:

γ-氨基丁酸(γ-aminobutyric acid,GABA)是一种极易溶于水的非蛋白质氨基酸,被广泛应用于食品和制药工业中,市场需求量极大。可通过化学合成法、植物富集法、微生物直接发酵法和生物转化法生产。近年来,因生物法合成GABA具有相对优势,受到研究者们的重视。对GABA的生产方法、生产GABA的微生物、微生物合成GABA的关键代谢途径和GAD酶的定向改造策略进行了论述。

关键词: γ-氨基丁酸生物合成代谢途径定向改造    
Abstract:

Gamma aminobutyric acid (GABA) is a kind of non-protein amino acid which is very soluble in water. It is widely used in food and pharmaceutical industry, and the market demand is very large. It can be produced by chemical synthesis, plant enrichment, microbial direct fermentation and biotransformation. In recent years, the synthesis of GABA by biological methods has its relative advantages, and has been paid attention by researchers. In this paper, the production methods of GABA, the microorganisms producing GABA, the key metabolic pathway of GABA synthesis and the directed transformation strategy of GAD enzyme were discussed.

Key words: γ-Aminobutyric acid    Biosynthesis    Metabolic pathway    Directed transformation
收稿日期: 2021-03-17 出版日期: 2021-08-31
ZTFLH:  Q816  
基金资助: * 宁夏回族自治区重点研发计划(2019BCH01002);宁夏食品微生物应用技术与安全控制重点实验室平台建设项目资助项目(2019BDC05009);宁夏食品微生物应用技术与安全控制重点实验室平台建设项目资助项目(2019YDDF0062)
通讯作者: 方海田     E-mail: fanght@nxu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张恒
刘慧燕
潘琳
王红燕
李晓芳
王彤
方海田

引用本文:

张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.

ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid. China Biotechnology, 2021, 41(8): 110-119.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103038        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/110

图1  γ-氨基丁酸的化学结构式
来源 生长条件 GAD特性 参考文献
最适温度/℃ 最适pH 最适温度/℃ 最适pH
大肠杆菌(细菌) 37 6.0~6.5 37 3.8~4.5 [14]
短乳杆菌(细菌) 37 5.5~6.0 50 4.0~4.5 [15]
酵母菌(真菌) 25 5.0~5.5 35 5.0~5.5 [16]
米曲霉(真菌 ) 30 6.0~6.5 40 5.0~5.5 [7]
表1  不同来源微生物的生长条件及GAD酶学特性
微生物 生产方法 底物 GABA产量/
(g/L)
参考文献
大肠杆菌
E.coli K-12 蛋白质支架固定GABA分流通路的关键酶,直接发酵 10 g/L的葡萄糖 1.08 [18]
E.coli BL21(DE3) E.coli K-12的GAD表达于E.coli BL2,全细胞转化 200 g/L的L-谷氨酸 138 [19]
E.coli BW25113 Lactococcus lactis的GAD定点突变后表达于E. coli BW25113。全细胞转化 441.39 g/L的L-谷
氨酸
307.4 [20]
E.coli XL1-Blue (XB) Thermococcus hordei的GAD异源表达于E.coli XL1-Blue (XB),直接发酵 10 g/L的味精 5.69 [21]
乳酸菌
L.plantarum UV43-7 诱变所得菌株,直接发酵 15 g/L的味精 4.003 [22]
L. plantarum CICC 6238 诱变所得菌株,直接发酵 15 g/L的味精 1.196±0.033 [23]
Lactobacillus paracasei 直接发酵 73.57 g/L的L-谷氨酸 31.11 [24]
谷氨酸棒杆菌
C.glutamicum ATCC
13032
E.coli K-12的GAD表达于C.glutamicum ATCC,直接发酵 50 g/L的葡萄糖 12 [25]
C.glutamicum ATCC
13032
L.plantarum GB01-21的 GAD定点突变后异源表达于C.glutamicum ATCC13032,全细胞转化 400 g/L的L-谷氨酸 116 [26]
表2  常见生产GABA的微生物及生产方法
图2  大肠杆菌GABA代谢途径及编码基因
图3  谷氨酸棒杆菌谷氨酸代谢途径
图4  PLP活性中心
图5  酸性和中性条件下gad B蛋白质结构图
图6  62号氨基酸突变前后与PLP的相互作用图
[1] 方卉. 短乳杆菌谷氨酸脱羧酶活性中心关键位点的研究. 杭州: 浙江科技学院, 2019.
Fang H. Study on key sites of glutamate decarboxylase active center of Lactobacillus brevis. Hangzhou: Zhejiang University of Science & Technology, 2019.
[2] 蒋彤, 徐慧, 贾丽娜. γ-氨基丁酸的生理功能及其在食品中的应用研究进展. 粮食与油脂, 2020, 33(4):23-25.
Jiang T, Xu H, Jia L N. Research progress on the physiological function of γ-aminobutyric acid and its application in food. Cereals & Oils, 2020, 33(4):23-25.
[3] Han M, Liao W Y, Wu S M, et al. Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk. Journal of Dairy Science, 2020, 103(1):98-105.
doi: 10.3168/jds.2019-16856
[4] Shan Y, Man C X, Han X, et al. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. Journal of Dairy Science, 2015, 98(4):2138-2149.
doi: 10.3168/jds.2014-8698 pmid: 25622870
[5] 宁亚维, 马梦戈, 杨正, 等. γ-氨基丁酸的制备方法及其功能食品研究进展. 食品与发酵工业, 2020, 46(23):238-247.
Ning Y W, Ma M G, Yang Z, et al. Research progress in the enrichment process and functional foods of γ-aminobutyric acid. Food and Fermentation Industries, 2020, 46(23):238-247.
[6] Shekari A, Naghshiband Hassani R, Soleimani Aghdam M. Exogenous application of GABA retards cap browning in Agaricus bisporus and its possible mechanism. Postharvest Biology and Technology, 2021, 174:111434.
doi: 10.1016/j.postharvbio.2020.111434
[7] 王志超. 霉菌转化法合成γ-氨基丁酸的研究. 济南: 齐鲁工业大学, 2016.
Wang Z C. The research of γ-aminobutyric acid synthesized by mold transformation. Jinan: Qilu University of Technology, 2016.
[8] 孙磊, 王苑, 柏映国, 等. 谷氨酸脱羧酶结构及催化机制的研究概述. 微生物学通报, 2020, 47(7):2236-2244.
Sun L, Wang Y, Bai Y G, et al. Structure and catalytic mechanism of glutamate decarboxylase: a review. Microbiology China, 2020, 47(7):2236-2244.
[9] 金敏. 玉米多组织初级代谢遗传结构解析. 武汉, 华中农业大学, 2020.
Jin M. Analysis of the genetic structure of primary metabolism in maize. Wuhan: Huazhong Agricultural University, 2020.
[10] Gut H, Dominici P, Pilati S, et al. A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. Journal of Molecular Biology, 2009, 392(2):334-351.
doi: 10.1016/j.jmb.2009.06.080
[11] Sarasa S B, Mahendran R, Muthusamy G, et al. A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): Its production and role in microbes. Current Microbiology, 2020, 77(4):534-544.
doi: 10.1007/s00284-019-01839-w pmid: 31844936
[12] 王斌, 丁俊胄, 贾才华, 等. 环境胁迫植物富集γ-氨基丁酸的研究进展. 食品工业科技, 2018, 39(18):342-346, 352.
Wang B, Ding J Z, Jia C H, et al. Research progress on enrichment ofγ-aminobutyric acid in plants under environmental stress. Science and Technology of Food Industry, 2018, 39(18):342-346, 352.
[13] 侯亚男, 冯昆. 中药微生物转化研究进展. 云南中医中药杂志, 2019, 40(12):66-69.
Hou Y N, Feng K. Progress in microbial transformation of Traditional Chinese Medicine. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2019, 40(12):66-69.
[14] Capitani G, De Biase D, Aurizi C, et al. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. The EMBO Journal, 2003, 22(16):4027-4037.
doi: 10.1093/emboj/cdg403
[15] 李佑新. 短乳杆菌谷氨酸脱羧酶在谷氨酸棒杆菌中的表达和γ-氨基丁酸的生物合成. 无锡: 江南大学, 2012.
Li Y X. Expression of Lactobacillus brevis glutamate decarboxylase and synthesis of γ-aminobutyric acid in Corynebacterium glutamicum. Wuxi: Jiangnan University, 2012.
[16] 李杰. 生物合成γ-氨基丁酸酵母菌谷氨酸脱羧酶基因的克隆及表达. 金华: 浙江师范大学, 2009.
Li J. Molecular cloning and expression of the glutamic acid decarboxylase gene from Saccharomyces cerevisiae for biosynthesis of γ-amino butyric acid. Jinhua: Zhejiang Normal University, 2009.
[17] 李文强, 刘洋, 唐荣兴, 等. 全细胞生物转化法制备γ-氨基丁酸. 湖北大学学报(自然科学版), 2019, 41(1):5-9.
Li W Q, Liu Y, Tang R X, et al. Preparation of γ-aminobutyric acid using whole-cell biotransformation. Journal of Hubei University (Natural Science), 2019, 41(1):5-9.
[18] Pham V, Somasundaram S, Lee S H, et al. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. Journal of Industrial Microbiology & Biotechnology, 2016, 43(1):79-86.
[19] Plokhov A Y, Gusyatiner M M, Yampolskaya T A, et al. Preparation of γ-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Applied Biochemistry and Biotechnology, 2000, 88(1-3):257-265.
doi: 10.1385/ABAB:88:1-3
[20] Yang X W, Ke C R, Zhu J M, et al. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst. Applied Microbiology and Biotechnology, 2018, 102(8):3623-3633.
doi: 10.1007/s00253-018-8881-0
[21] Vo T D L, Pham V D, Ko J S, et al. Improvement of gamma-amino butyric acid production by an overexpression of glutamate decarboxylase from Pyrococcus horikoshii in Escherichia coli. Biotechnology and Bioprocess Engineering, 2014, 19(2):327-331.
doi: 10.1007/s12257-013-0713-6
[22] 田蕊. 产γ-氨基丁酸乳酸菌的筛选鉴定、紫外诱变及发酵条件优化. 呼和浩特: 内蒙古农业大学, 2018.
Tian R. Screening, identification, UV mutagenesis and fermentation conditions optimization of γ-aminobutyric acid by Lactobacillus. Hohhot: Inner Mongolia Agricultural University, 2018.
[23] 史晓萌, 陈建国, 李生有, 等. 产γ-氨基丁酸乳酸菌CICC 6238的诱变选育及益生特性分析. 食品与发酵工业, 2018, 44(8):71-77.
Shi X M, Chen J G, Li S Y, et al. Mutation breeding of Lactobacillus plantarum CICC 6238 for γ-aminobutyric acid production and analysis of probiotic properties. Food and Fermentation Industries, 2018, 44(8):71-77.
[24] Komatsuzaki N, Jun S M, Kawamoto S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiology, 2005, 22(6):497-504.
doi: 10.1016/j.fm.2005.01.002
[25] Takahashi C, Shirakawa J, Tsuchidate T, et al. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme and Microbial Technology, 2012, 51(3):171-176.
doi: 10.1016/j.enzmictec.2012.05.010 pmid: 22759537
[26] 饶志明. 一种pH稳定性提高的谷氨酸脱羧酶突变体及其应用: 中国, CN105296456A 2016-02-03[2021-03-14]. https://www.cnki.net/
Rao Z M. A glutamate decarboxylase mutant with improved pH stability and application thereof: China, CN105296456A, 2016-02-03[2021-03-14]. https://www.cnki.net/
[27] 张耀, 邱晓曼, 陈程鹏, 等. 生物法制造丁二酸研究进展. 化工学报, 2020, 71(5):1964-1975.
Zhang Y, Qiu X M, Chen C P, et al. Recent progress in microbial production of succinic acid. CIESC Journal, 2020, 71(5):1964-1975.
[28] Yu P, Ren Q, Wang X X, et al. Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering. Biochemical Engineering Journal, 2019, 141:252-258.
doi: 10.1016/j.bej.2018.10.025
[29] Pham V D, Somasundaram S, Lee S H, et al. Engineering the intracellular metabolism of Escherichia coli to produce gamma-aminobutyric acid by co-localization of GABA shunt enzymes. Biotechnology Letters, 2016, 38(2):321-327.
doi: 10.1007/s10529-015-1982-2
[30] 温经柏. 代谢工程改造谷氨酸棒状杆菌发酵生产纤维素谷氨酸和γ-氨基丁酸. 上海: 华东理工大学, 2019.
Wen J B. Metabolic engineering of Corynebacterium glutamicum for cellulosic glutamic acid and γ-aminobutyric acid fermentation. Shanghai: East China University of Science and Technology, 2019.
[31] Shirai T, Fujimura K, Furusawa C, et al. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microbial Cell Factories, 2007, 6:19.
doi: 10.1186/1475-2859-6-19
[32] Wang N N, Ni Y L, Shi F. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor l-glutamate in recombinant Corynebacterium glutamicum. Biotechnology Letters, 2015, 37(7):1473-1481.
doi: 10.1007/s10529-015-1822-4
[33] Niebisch A, Kabus A, Schultz C, et al. Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. Journal of Biological Chemistry, 2006, 281(18):12300-12307.
pmid: 16522631
[34] Schultz C, Niebisch A, Gebel L, et al. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Applied Microbiology and Biotechnology, 2007, 76(3):691-700.
doi: 10.1007/s00253-007-0933-9
[35] Okai N, Takahashi C, Hatada K, et al. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express, 2014, 4:20.
doi: 10.1186/s13568-014-0020-4
[36] Shi F, Zhang M, Li Y F. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 2017, 33(6):1-8.
doi: 10.1007/s11274-016-2144-y
[37] Shi F, Li Y X. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnology Letters, 2011, 33(12):2469-2474.
doi: 10.1007/s10529-011-0723-4
[38] Delaunay S, Daran-Lapujade P, Engasser J M, et al. Glutamate as an inhibitor of phosphoenolpyruvate carboxylase activity in Corynebacterium glutamicum. Journal of Industrial Microbiology and Biotechnology, 2004, 31(4):183-188.
doi: 10.1007/s10295-004-0137-6
[39] Wada M, Sawada K, Ogura K, et al. Effects of phosphoenolpyruvate carboxylase desensitization on glutamic acid production in Corynebacterium glutamicum ATCC 13032. Journal of Bioscience and Bioengineering, 2016, 121(2):172-177.
doi: 10.1016/j.jbiosc.2015.06.008
[40] Wen J B, Xiao Y Q, Liu T, et al. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum. Biotechnology for Biofuels, 2018, 11:132.
doi: 10.1186/s13068-018-1132-x
[41] Zhang R Z, Yang T W, Rao Z M, et al. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum. Green Chem, 2014, 16(9):4190-4197.
doi: 10.1039/C4GC00607K
[42] 吕红芳, 王浩, 徐宁, 等. 外源精氨酸对谷氨酸棒杆菌在高葡萄糖胁迫下生长和发酵特性的影响. 微生物学通报, 2017, 44(11):2539-2546.
Lü H F, Wang H, Xu N, et al. Effects of exogenous arginine on the growth and fermentation performance of Corynebacterium glutamicum under high glucose stress. Microbiology China, 2017, 44(11):2539-2546.
[43] Kataoka M, Hashimoto K I, Yoshida M, et al. Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction. Letters in Applied Microbiology, 2006, 42(5):471-476.
pmid: 16620205
[44] Shi F, Xie Y L, Jiang J J, et al. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme and Microbial Technology, 2014, 61-62:35-43.
doi: 10.1016/j.enzmictec.2014.04.012
[45] Shi F, Luan M Y, Li Y F. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum. AMB Express, 2018, 8(1):1-17.
doi: 10.1186/s13568-017-0531-x
[46] 江正强. 获得定向突变基因的方法和基于其发现的酸性β-1,3-1,4-葡聚糖酶: 中国, CN103045560A, 2013-04-17[2021-03-14]=. https://www.cnki.net/
Jiang Z Q. Method for obtaining targeted mutation gene and acid β-1,3-1,4-glucanase based on its discovery: China(Beijing), CN103045560A, 2013-04-17[2021-03-14]=. https://www.cnki.net/
[47] Yokoyama S, Hiramatsu J I, Hayakawa K. Production of gamma-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. Journal of Bioscience and Bioengineering, 2002, 93(1):95-97.
pmid: 16233172
[48] Jun C H, Joo J C, Lee J H, et al. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain. Journal of Biotechnology, 2014, 174:22-28.
doi: 10.1016/j.jbiotec.2014.01.020
[49] Astegno A, Capitani G, Dominici P. Functional roles of the hexamer organization of plant glutamate decarboxylase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2015, 1854(9):1229-1237.
[50] 林玲, 胡升, 郁凯, 等. 饱和定点突变拓宽谷氨酸脱羧酶催化pH范围的研究. 高校化学工程学报, 2014, 28(6):1410-1414.
Lin L, Hu S, Yu K, et al. Expanding the active p H range of Lactobacillus brevis glutamate decarboxylase by saturation mutagenesis. Journal of Chemical Engineering of Chinese Universities, 2014, 28(6):1410-1414.
[51] Ho N A T, Hou C Y, Kim W H, et al. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness. Journal of Bioscience and Bioengineering, 2013, 115(2):154-158.
doi: 10.1016/j.jbiosc.2012.09.002
[52] John R A. Pyridoxal phosphate-dependent enzymes. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1995, 1248(2):81-96.
doi: 10.1016/0167-4838(95)00025-P
[53] 韩啸, 于雷雷, 翟齐啸, 等. 短乳杆菌和植物乳杆菌产γ-氨基丁酸及其关键基因的研究. 食品与发酵工业, 2019, 45(13):1-8.
Han X, Yu L L, Zhai Q X, et al. Production of γ-aminobutyric acid by Lactobacillus brevis and Lactobacillus plantarum and key relevant genes analysis. Food and Fermentation Industries, 2019, 45(13):1-8.
[54] 郭玉杰, 涂涛, 邱锦, 等. 篮状菌Talaromyces leycettanus JCM12802来源的高温葡萄糖淀粉酶性质与结构. 生物工程学报, 2019, 35(4):616-625.
Guo Y J, Tu T, Qiu J, et al. Properties and structure of high temperature glucoamylase derived from Talaromyces leycettanus JCM12802. Chinese Journal of Biotechnology, 2019, 35(4):616-625.
[1] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[2] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[3] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[4] 王一涵,李海岩,薛永常. 黄素依赖型卤化酶的结构特点及工程改造*[J]. 中国生物工程杂志, 2021, 41(4): 74-80.
[5] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[6] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[7] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[8] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[9] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[10] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[11] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[12] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[13] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[14] 欧梦莹,王晓政,林双君,关统伟,林宜锦. 链黑菌素研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 100-107.
[15] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.