Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 52-58    DOI: 10.13523/j.cb.2104039
综述     
基因治疗慢病毒载体的转导增强策略*
赵晓煜1,徐祺玲1,2,赵晓东2,3,4,5,**(),安云飞1,2,3,4,5
1 重庆医科大学附属儿童医院 重庆 400014
2 儿童感染免疫重庆市重点实验室 重庆 400014
3 儿童发育疾病研究教育部重点实验室 重庆 400014
4 国家儿童健康与疾病临床医学研究中心(重庆) 重庆 400014
5 儿童发育重大疾病国家国际科技合作基地 重庆 400014
Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy
ZHAO Xiao-yu1,XU Qi-ling1,2,ZHAO Xiao-dong2,3,4,5,**(),AN Yun-fei1,2,3,4,5
1 Department of Rheumatology and Immunology, Affiliated Children's Hospital of Chongqing Medical University, Chongqing 400014, China
2 Chongqing Key Laboratory of Children's Infection and Immunity, Chongqing 400014, China
3 Key Laboratory of Children's Developmental Diseases, Ministry of Education, Chongqing 400014, China
4 National Children's Health and Disease Clinical Medical Research Center (Chongqing), Chongqing 400014, China
5 National International Science and Technology Cooperation Base for Major Children's Developmental Diseases, Chongqing 400014, China
 全文: PDF(998 KB)   HTML
摘要:

基于慢病毒载体的体外基因治疗已在临床试验中取得良好的效果,有望治愈一些造血系统的单基因遗传病。通过提高靶细胞转导效率和减少转导中病毒载体量,基因治疗有效性、安全性和成本都可以得到改善。不同包膜糖蛋白伪型慢病毒载体通过与细胞膜表面的不同受体结合,促进病毒黏附和入胞,增强不同靶细胞的病毒转导效率。此外病毒转导增强剂可以在病毒进入细胞过程或进入后发挥作用,在提高转导效率的同时使靶转导基因在体内长期稳定表达。通过对这两类方法的总结回顾,旨在为慢病毒载体的转导效率提供新的优化策略,使基因治疗得到更广泛的应用。

关键词: 基因治疗转导效率慢病毒载体包膜糖蛋白病毒转导增强剂    
Abstract:

Lentiviral vectors (LVVs) are used for various gene therapeutic applications in vitro, and have shown very promising results in several clinical trials. This possibility of a durable cure for monogenic diseases affecting the hematopoietic system has made gene therapy very attractive. Yet, efficiency, safety, and cost of LVVs gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LVVs used on the cells. LVVs are pseudotyped with different viral envelope glycoproteins to alter and improve their tropism for different target cells. Another strategy to optimize the entry and post-entry steps of LVVs is the addition of transduction enhancers (TEs) during the transduction procedure, which improves the transduction efficiency and keeps stable expression of transferred genes in vivo. The combination of pseudotyping with heterologous viral envelopes and adding TEs increased the transduction efficiency of LVVs, and has the potential to improve clinical protocols.

Key words: Gene therapy    Transduction efficiency    Lentiviral vectors    Envelope glycoprotein    Viral transduction enhancer
收稿日期: 2021-04-22 出版日期: 2021-08-31
ZTFLH:  Q812  
基金资助: * 重庆市科技计划资助项目(cstc2018jscx-msybX0005)
通讯作者: 赵晓东     E-mail: zhaoxd530@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵晓煜
徐祺玲
赵晓东
安云飞

引用本文:

赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.

ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy. China Biotechnology, 2021, 41(8): 52-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2104039        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/52

[1] Odiba A S, Okoro N O, Durojaye O A, et al. Gene therapy in PIDs, hemoglobin, ocular, neurodegenerative, and hemophilia B disorders. Open Life Sciences, 2021, 16(1):431-441.
doi: 10.1515/biol-2021-0033
[2] Hacein-Bey-abina S, Garrigue A, Wang G P, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. The Journal of Clinical Investigation, 2008, 118(9):3132-3142.
doi: 10.1172/JCI35700
[3] Hacein-Bey-abina S, Hauer J, Lim A, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. New England Journal of Medicine, 2010, 363(4):355-364.
doi: 10.1056/NEJMoa1000164
[4] Mamcarz E, Zhou S, Lockey T, et al. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. The New England Journal of Medicine, 2019, 380(16):1525-1534.
doi: 10.1056/NEJMoa1815408
[5] Kohn D B, Booth C, Kang E M, et al. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nature Medicine, 2020, 26(2):200-206.
doi: 10.1038/s41591-019-0735-5
[6] Thompson A A, Walters M C, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. The New England Journal of Medicine, 2018, 378(16):1479-1493.
doi: 10.1056/NEJMoa1705342 pmid: 29669226
[7] de Ravin S S, Wu X L, Moir S, et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Science Translational Medicine, 2016, 8(335): 335ra57.
[8] Millington M, Arndt A, Boyd M, et al. Towards a clinically relevant lentiviral transduction protocol for primary human CD34 hematopoietic stem/progenitor cells. PLoS One, 2009, 4(7):e6461.
doi: 10.1371/journal.pone.0006461
[9] Gutierrez-Guerrero A, Cosset F L, Verhoeyen E. Lentiviral vector pseudotypes: precious tools to improve gene modification of hematopoietic cells for research and gene therapy. Viruses, 2020, 12(9):1016.
doi: 10.3390/v12091016
[10] Anastasov N, Höfig I, Mall S, et al. Optimized lentiviral transduction protocols by use of a poloxamer enhancer, spinoculation, and scFv-antibody fusions to VSV-G. Lentiviral Vectors and Exosomes as Gene and Protein Delivery Tools, 2016: 1448:49-61. DOI: 10.1007/978-1-4939-3753-0_4.
doi: 10.1007/978-1-4939-3753-0_4
[11] Amirache F, Lévy C, Costa C, et al. Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor. Blood, 2014, 123(9):1422-1424.
doi: 10.1182/blood-2013-11-540641 pmid: 24578496
[12] Ahmed F, Ings S J, Pizzey A R, et al. Impaired bone marrow homing of cytokine-activated CD34+ cells in the NOD/SCID model. Blood, 2004, 103(6):2079-2087.
doi: 10.1182/blood-2003-06-1770
[13] Di Nunzio F, Piovani B, Cosset F L, et al. Transduction of human hematopoietic stem cells by lentiviral vectors pseudotyped with the RD114-TR chimeric envelope glycoprotein. Human Gene Therapy, 2007, 18(9):811-820.
pmid: 17824830
[14] Girard-Gagnepain A, Amirache F, Costa C, et al. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood, 2014, 124(8):1221-1231.
doi: 10.1182/blood-2014-02-558163 pmid: 24951430
[15] Marin M, Lavillette D, Kelly S M, et al. N-linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions. Journal of Virology, 2003, 77(5):2936-2945.
doi: 10.1128/JVI.77.5.2936-2945.2003
[16] Bernadin O, Amirache F, Girard-Gagnepain A, et al. Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Advances, 2019, 3(3):461-475.
doi: 10.1182/bloodadvances.2018027508
[17] Colamartino A B L, Lemieux W, Bifsha P, et al. Efficient and robust NK-cell transduction with baboon envelope pseudotyped lentivector. Frontiers in Immunology, 2019, 10:2873.
doi: 10.3389/fimmu.2019.02873 pmid: 31921138
[18] Frecha C, Levy C, Costa C, et al. Measles virus glycoprotein-pseudotyped lentiviral vector-mediated gene transfer into quiescent lymphocytes requires binding to both SLAM and CD46 entry receptors. Journal of Virology, 2011, 85(12):5975-5985.
doi: 10.1128/JVI.00324-11
[19] Frecha C, Costa C, Nègre D, et al. Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood, 2008, 112(13):4843-4852.
[20] Lévy C, Amirache F, Girard-Gagnepain A, et al. Measles virus envelope pseudotyped lentiviral vectors transduce quiescent human HSCs at an efficiency without precedent. Blood Advances, 2017, 1(23):2088-2104.
doi: 10.1182/bloodadvances.2017007773
[21] DePolo N J, Reed J D, Sheridan P L, et al. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Molecular Therapy, 2000, 2(3):218-222.
pmid: 10985952
[22] Humbert O, Gisch D W, Wohlfahrt M E, et al. Development of third-generation cocal envelope producer cell lines for robust lentiviral gene transfer into hematopoietic stem cells and T-cells. Molecular Therapy, 2016, 24(7):1237-1246.
doi: 10.1038/mt.2016.70
[23] Hu S, Mohan Kumar D, Sax C, et al. Pseudotyping of lentiviral vector with novel Vesiculovirus envelope glycoproteins derived from Chandipura and Piry viruses. Virology, 2016, 488:162-168.
doi: 10.1016/j.virol.2015.11.012
[24] Cornetta K, Anderson W F. Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer: implications for human gene therapy. Journal of Virological Methods, 1989, 23(2):187-194.
pmid: 2786000
[25] Davis H E, Morgan J R, Yarmush M L. Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophysical Chemistry, 2002, 97(2-3):159-172.
doi: 10.1016/S0301-4622(02)00057-1
[26] Lin P, Correa D, Lin Y, et al. Polybrene inhibits human mesenchymal stem cell proliferation during lentiviral transduction. PLoS One, 2011, 6(8):e23891. DOI: 10.1371/journal.pone.0023891.
doi: 10.1371/journal.pone.0023891
[27] Nanba D, Matsushita N, Toki F, et al. Efficient expansion of human keratinocyte stem/progenitor cells carrying a transgene with lentiviral vector. Stem Cell Research & Therapy, 2013, 4(5):127.
[28] Han M M, Yu D Z, Song Q, et al. Polybrene: Observations on cochlear hair cell necrosis and minimal lentiviral transduction of cochlear hair cells. Neuroscience Letters, 2015, 600:164-170.
doi: 10.1016/j.neulet.2015.06.011
[29] Kim B J, Kim K J, Kim Y H, et al. Efficient enhancement of lentiviral transduction efficiency in murine spermatogonial stem cells. Molecules and Cells, 2012, 33(5):449-455.
doi: 10.1007/s10059-012-2167-7
[30] Zhou R Q, Gong Y P, Lin J, et al. The optimization of method for lentiviral vector to transfect CD34+ hematopoietic stem cells from human cord. Journal of Sichuan University Medical Science Edition, 2013, 44(1):130-134.
[31] Lin P, Lin Y, Lennon D P, et al. Efficient lentiviral transduction of human mesenchymal stem cells that preserves proliferation and differentiation capabilities. Stem Cells Translational Medicine, 2012, 1(12):886-897.
doi: 10.5966/sctm.2012-0086
[32] Hauber I, Beschorner N, Schrödel S, et al. Improving lentiviral transduction of CD34+ hematopoietic stem and progenitor cells. Human Gene Therapy Methods, 2018, 29(2):104-113.
doi: 10.1089/hgtb.2017.085
[33] Delville M, Soheili T, Bellier F, et al. A nontoxic transduction enhancer enables highly efficient lentiviral transduction of primary murine T cells and hematopoietic stem cells. Molecular Therapy - Methods & Clinical Development, 2018, 10:341-347.
[34] Kerkar S P, Sanchez-Perez L, Yang S C, et al. Genetic engineering of murine CD8+ and CD4+ T cells for preclinical adoptive immunotherapy studies. Journal of Immunotherapy, 2011, 34(4):343-352.
doi: 10.1097/CJI.0b013e3182187600 pmid: 21499127
[35] Elias A K, Scanlon D, Musgrave I F, et al. SEVI, the semen enhancer of HIV infection along with fragments from its central region, form amyloid fibrils that are toxic to neuronal cells. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2014, 1844(9):1591-1598.
doi: 10.1016/j.bbapap.2014.06.006
[36] Roan N R, Münch J, Arhel N, et al. The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection. Journal of Virology, 2009, 83(1):73-80.
doi: 10.1128/JVI.01366-08
[37] Wurm M, Schambach A, Lindemann D, et al. The influence of semen-derived enhancer of virus infection on the efficiency of retroviral gene transfer. The Journal of Gene Medicine, 2010, 12(2):137-146.
[38] Wurm M, Gross B, Sgodda M, et al. Improved lentiviral gene transfer into human embryonic stem cells grown in co-culture with murine feeder and stroma cells. Biological Chemistry, 2011, 392(10):887-895.
doi: 10.1515/BC.2011.085
[39] Höfig I, Atkinson M J, Mall S, et al. Poloxamer synperonic F108 improves cellular transduction with lentiviral vectors. The Journal of Gene Medicine, 2012, 14(8):549-560.
doi: 10.1002/jgm.2653 pmid: 22887595
[40] Simon B, Harrer D C, Thirion C, et al. Enhancing lentiviral transduction to generate melanoma-specific human T cells for cancer immunotherapy. Journal of Immunological Methods, 2019, 472:55-64.
doi: 10.1016/j.jim.2019.06.015
[41] North T E, Goessling W, Walkley C R, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447(7147):1007-1011.
doi: 10.1038/nature05883
[42] Goessling W, Allen R S, Guan X, et al. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell, 2011, 8(4):445-458.
doi: 10.1016/j.stem.2011.02.003 pmid: 21474107
[43] Zonari E, Desantis G, Petrillo C, et al. Efficient ex vivo engineering and expansion of highly purified human hematopoietic stem and progenitor cell populations for gene therapy. Stem Cell Reports, 2017, 8(4):977-990.
doi: S2213-6711(17)30077-2 pmid: 28330619
[44] Cutler C, Multani P, Robbins D, et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood, 2013, 122(17):3074-3081.
doi: 10.1182/blood-2013-05-503177 pmid: 23996087
[45] Brown B D, Sitia G, Annoni A, et al. In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood, 2007, 109(7):2797-2805.
doi: 10.1182/blood-2006-10-049312
[46] Yan N, Chen Z J. Intrinsic antiviral immunity. Nature Immunology, 2012, 13(3):214-222.
doi: 10.1038/ni.2229
[47] Petrillo C, Calabria A, Piras F, et al. Assessing the impact of cyclosporin A on lentiviral transduction and preservation of human hematopoietic stem cells in clinically relevant ex vivo gene therapy settings. Human Gene Therapy, 2019, 30(9):1133-1146.
doi: 10.1089/hum.2019.016
[48] Petrillo C, Cesana D, Piras F, et al. Cyclosporin A and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells. Molecular Therapy, 2015, 23(2):352-362.
doi: 10.1038/mt.2014.193
[49] Amini-Bavil-olyaee S, Choi Y J, Lee J H, et al. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host & Microbe, 2013, 13(4):452-464.
[50] Smith S, Weston S, Kellam P, et al. IFITM proteins-cellular inhibitors of viral entry. Current Opinion in Virology, 2014, 4:71-77.
doi: 10.1016/j.coviro.2013.11.004 pmid: 24480526
[51] Li K, Markosyan R M, Zheng Y M, et al. IFITM proteins restrict viral membrane hemifusion. PLoS Pathogens, 2013, 9(1):e1003124. DOI: 10.1371/journal.ppat.1003124.
doi: 10.1371/journal.ppat.1003124
[52] Chan Y K, Huang I C, Farzan M. IFITM proteins restrict antibody-dependent enhancement of dengue virus infection. PLoS One, 2012, 7(3):e34508. DOI: 10.1371/journal.pone.0034508.
doi: 10.1371/journal.pone.0034508
[53] Wu X F, Dao Thi V L, Huang Y M, et al. Intrinsic immunity shapes viral resistance of stem cells. Cell, 2018, 172(3):423-438.e25.
doi: 10.1016/j.cell.2017.11.018
[54] Petrillo C, Thorne L G, Unali G, et al. Cyclosporine H overcomes innate immune restrictions to improve lentiviral transduction and gene editing in human hematopoietic stem cells. Cell Stem Cell, 2018, 172(3):423-438.e25.
[55] Jang Y, Kim Y S, Wielgosz M M, et al. Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy. Gene Therapy, 2020, 27(12):545-556.
doi: 10.1038/s41434-020-0150-z
[56] Olender L, Bujanover N, Sharabi O, et al. 3119 - cyclosporine h improves the multi-vector lentiviral transduction of murine haematopoietic progenitors and stem cells. Experimental Hematology, 2020, 88:S75.
[57] Piras F, Riba M, Petrillo C, et al. Lentiviral vectors escape innate sensing but trigger p53 in human hematopoietic stem and progenitor cells. EMBO Molecular Medicine, 2017, 9(9):1198-1211.
doi: 10.15252/emmm.201707922
[58] Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science, 2013, 341(6148):1233158.
doi: 10.1126/science.1233158
[59] Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science, 2013, 341(6148):1233151.
doi: 10.1126/science.1233151
[60] Cartier N, Hacein-Bey-abina S, Bartholomae C C, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science, 2009, 326(5954):818-823.
doi: 10.1126/science.1171242
[61] Schejtman A, Vetharoy W, Choi U, et al. Preclinical optimization and safety studies of a new lentiviral gene therapy for p47phox-deficient chronic granulomatous disease. Human Gene Therapy, 2021: hum. 2020. 276.
[62] Tran R, Myers D R, Denning G, et al. Microfluidic transduction harnesses mass transport principles to enhance gene transfer efficiency. Molecular Therapy, 2017, 25(10):2372-2382.
doi: 10.1016/j.ymthe.2017.07.002
[1] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[2] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[3] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[4] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[5] 陶嫦立, 黄树林. TCR基因免疫治疗中优化转TCR基因配对的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 87-92.
[6] 刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠. CRISPR-Cas9研究进展及在基因治疗上的应用[J]. 中国生物工程杂志, 2016, 36(10): 72-78.
[7] 朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.
[8] 薛金锋, 薛志刚, 陈毅瑶, 李卓, 尹彪, 邬玲仟, 梁德生. 增强型肿瘤特异性启动子介导CDTK治疗肝癌的体内外研究[J]. 中国生物工程杂志, 2015, 35(6): 1-7.
[9] 高越, 檀硕, 任兆瑞, 张敬之. 原位染色检测慢病毒载体转录通读方法的建立[J]. 中国生物工程杂志, 2015, 35(5): 55-60.
[10] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[11] 李玉强, 朱志图, 王巍, 李谌, 徐娜, 王钰, 李男, 孙宏治. RNA干扰NUP88基因对人乳腺癌MCF-7细胞生长及侵袭力的影响[J]. 中国生物工程杂志, 2014, 34(9): 31-39.
[12] 张巧娟, 张艳琼, 柳长柏. 类转录激活样因子效应物核酸酶技术的原理及应用[J]. 中国生物工程杂志, 2014, 34(7): 76-80.
[13] 王鑫, 陈玲, 孙飞, 陆航. RNAi沉默CXCR7对人结肠癌细胞SW620特异性靶向抑制的实验研究[J]. 中国生物工程杂志, 2014, 34(2): 14-20.
[14] 马步云, 何婉婉, 周立, 王毅刚. 癌症靶向基因-病毒ZD55-XAF1抗肝癌移植瘤的生长及其安全性研究[J]. 中国生物工程杂志, 2014, 34(1): 15-20.
[15] 管洁, 邓瑶, 文波, 陈红, 王文, 谭文杰. 整合缺陷型重组慢病毒载体构建及HCV重组假型慢病毒颗粒的制备与性状分析[J]. 中国生物工程杂志, 2013, 33(6): 62-67.