Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 8-16    DOI: 10.13523/j.cb.2104002
研究报告     
角蛋白载药纳米颗粒的制备及药物可控释放性能研究*
李佳欣1,张正1,刘赫1,杨青1,吕成志2,**(),杨君1,**()
1 大连理工大学生物工程学院 大连 116024
2 大连市皮肤病医院 大连 116021
Preparation and Drug Release Properties of Keratin-loaded Nanoparticles
LI Jia-xin1,ZHANG Zheng1,LIU He1,YANG Qing1,LV Cheng-zhi2,**(),YANG Jun1,**()
1 School of Bioengineering, Dalian University of Technology, Dalian 116024,China
2 Dalian Dermatosis Hospital,Dalian 116021,China
 全文: PDF(1887 KB)   HTML
摘要:

目的:以角蛋白作为药物载体材料,制备智能响应性药物递送系统,研究其药物装载和释放性能。方法:利用去溶剂法制备角蛋白纳米颗粒(KNP),以罗丹明B(RB)和姜黄素(Cur)为亲水性和疏水性模式药物,制备载药KNP。利用钨灯丝扫描电镜(SEM)、动态光散射(DLS)、傅里叶变换红外光谱(FTIR)和药物体外释放实验等对KNP的尺寸、形貌、结构、载药和释药性能进行研究。结果:成功制备出粒径均一、约为300 nm 的KNP,能够装载亲水性和疏水性药物。载药颗粒在体外释放研究中表现出pH和氧化还原双重响应性。结论:利用去溶剂法,简便、安全地制备了分散性良好且具有pH和氧化还原双重响应性释放特性的角蛋白载药纳米颗粒,为角蛋白作为智能响应型药物递送载体的研究和应用提供了参考。

关键词: 角蛋白纳米颗粒药物载体pH响应性氧化还原响应性    
Abstract:

Objective: Keratin was used as the drug carrier material, and the hydrophilic drug rhodamine and hydrophobic drug curcumin were loaded to prepare the intelligent responsive drug delivery system, and the pH and redox responsiveness of drug release were studied. Methods: The exopolysaccharide of Lactobacillus plantarum was introduced into the reaction system of sodium selenite and ascorbic acid, and KNP was synthesized at room temperature. The size, morphology, structure and stability of KNP were studied by tungsten filament scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and drug release experiments in vitro. Results:KNP with uniform particle size of about 300 nm was successfully prepared, which can load hydrophilic and hydrophobic drugs. Keratin based nanoparticles exhibited pH and glutathione (GSH) dual responsive release characters. In addition, these drug-loaded particles showed potent prolongation duration, good stability, sustainable and controllable release than the original drug. Conclusion: KNP with high stability, good water dispersion and responsiveness can be prepared simply and safely, and the drug delivery system of keratin is an appropriate candidate drug carrier.

Key words: Keratin    Nanoparticles    Drug carrier    pH-responsive    Redox-responsive
收稿日期: 2021-04-30 出版日期: 2021-08-31
ZTFLH:  Q816  
基金资助: * 国家重点研发项目(2016YFD0200502);国家自然科学基金(31772193);国家自然科学基金(318030076);中央高校基本科研业务费项目资助项目(DUT19TD38)
通讯作者: 吕成志,杨君     E-mail: dlpfb126.com;junyang@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李佳欣
张正
刘赫
杨青
吕成志
杨君

引用本文:

李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.

LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles. China Biotechnology, 2021, 41(8): 8-16.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2104002        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/8

图1  单因素条件下KNP的粒径大小
图2  KNP钨灯丝扫描电镜下形态
载药量(LC)/% 包封率(EE)/% ζ电位/ mV
KNP-RB 9.64±0.43 43.28±1.38 -16.52±0.33
KNP-Cur 6.56±0.07 41.37±1.82 -24.91±0.36
表1  KNP载药效率和ζ电位
图3  载药纳米颗粒的红外光谱图
图4  载药纳米颗粒在pH为5和7时的释放曲线(25℃)
图5  载药纳米颗粒在室温(25℃)下的氧化还原响应性体外释放
图6  罗丹明B纳米颗粒在酵母细胞中的摄取
图7  姜黄素纳米颗粒在酵母细胞中的摄取
[1] Rajabinejad H, Patrucco A, Caringella R, et al. Preparation of keratin-based microcapsules for encapsulation of hydrophilic molecules. Ultrasonics Sonochemistry, 2018, 40:527-532.
doi: S1350-4177(17)30343-7 pmid: 28946454
[2] Chung J E, Yokoyama M, Yamato M, et al. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). Journal of Controlled Release, 1999, 62(1-2):115-127.
pmid: 10518643
[3] DeFrates K, Markiewicz T, Gallo P, et al. Protein polymer-based nanoparticles: Fabrication and medical applications. International Journal of Molecular Sciences, 2018, 19(6):1717.
doi: 10.3390/ijms19061717
[4] 杨君, 张正, 崔忠凯, 等. 新型pH响应性噻虫嗪纳米脂质体的制备及其杀虫活性. 农药学学报, 2020, 22(6):1054-1060.
Yang J, Zhang Z, Cui Z K, et al. Fabrication of pH-responsive non-phospholipid liposomal nanocarriers for insecticidal activity of thiamethoxam. Chinese Journal of Pesticide Science, 2020, 22(6):1054-1060.
[5] 袁丽. 刺激响应性纳米药物控释系统的制备及应用研究. 上海:复旦大学, 2013.
Yuan L. Preparation of stimuli-responsive nanomaterials and their application in controlled drug delivery. Shanghai: Fudan University, 2013.
[6] 白霜. 基于天然多糖类刺激响应型聚合物药物载体的构建及其在肿瘤治疗中的应用. 重庆:西南大学, 2019.
Bai S. The preparation and tumor therapy of stimuli-responsive polymeric drug carriers based natural polysaccharide. Chongqing: Southwest University, 2019.
[7] Karimi A, Askari G, Yarmand M S, et al. Development, modification and characterization of ursolic acid-loaded gelatin nanoparticles through electrospraying technique. Food and Bioproducts Processing, 2020, 124:329-341.
doi: 10.1016/j.fbp.2020.08.018
[8] 许雪儿, 李娟, 陈正行. 负载生育酚的玉米醇溶蛋白纳米颗粒的构建及性质表征. 中国食品学报, 2020, 20(12):24-30.
Xu X R, Li J, Chen Z X, et al. Construction and characterization of zein nanoparticles loaded with tocopherol. Journal of Chinese Institute of Food Science and Technology, 2020, 20(12):24-30.
[9] 李艳, 蓝锦晓, 罗成. 白蛋白纳米颗粒的制备研究进展. 中国生物医学工程学报, 2019, 38(1):112-119
Li Y, Lan J X, Luo C. Research progress in the preparation of albumin nanoparticles. Chinese Journal of Biomedical Engineering, 2019, 38(1):112-119.
[10] Cui X J, Guan X Y, Zhong S L, et al. Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release. Ultrasonics Sonochemistry, 2017, 38:145-153.
doi: 10.1016/j.ultsonch.2017.03.011
[11] Zhi X L, Liu P C, Li Y M, et al. One-step fabricated keratin nanoparticles as pH and redox-responsive drug nanocarriers. Journal of Biomaterials Science, Polymer Edition, 2018, 29(15):1920-1934.
doi: 10.1080/09205063.2018.1519987
[12] Aluigi A, Corbellini A, Rombaldoni F, et al. Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions. Textile Research Journal, 2013, 83(15):1574-1586.
doi: 10.1177/0040517512467060
[13] Eslahi N, Dadashian F, Nejad N H. An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Preparative Biochemistry & Biotechnology, 2013, 43(7):624-648.
[14] Rouse J G, van Dyke M E. A review of keratin-based biomaterials for biomedical applications. Materials, 2010, 3(2):999-1014.
doi: 10.3390/ma3020999
[15] Volkov V, Cavaco-Paulo A. Enzymatic phosphorylation of hair keratin enhances fast adsorption of cationic moieties. International Journal of Biological Macromolecules, 2016, 85:476-486.
doi: 10.1016/j.ijbiomac.2015.12.082 pmid: 26756110
[16] Li Y M, Lin J T, Zhi X L, et al. Triple stimuli-responsive keratin nanoparticles as carriers for drug and potential nitric oxide release. Materials Science and Engineering: C, 2018, 91:606-614.
doi: 10.1016/j.msec.2018.05.073
[17] Li Y M, Zhi X L, Lin J T, et al. Preparation and characterization of DOX loaded keratin nanoparticles for pH/GSH dual responsive release. Materials Science and Engineering: C, 2017, 73:189-197.
doi: 10.1016/j.msec.2016.12.067
[18] Yi Z, Sun Z, Chen G C, et al. Size-controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy. Journal of Materials Chemistry B, 2018, 6(9):1373-1386.
doi: 10.1039/C7TB03293E
[19] Karunanidhi A, David P S, Fathima N N. Electrospun keratin-polysulfone blend membranes for treatment of tannery effluents. Water, Air, & Soil Pollution, 2020, 231(6):1-11.
[20] 叶金鹏, 龚劲松, 苏畅, 等. 用于伤口愈合的高分子角蛋白基纳米纤维膜的制备与表征. 胶体与表面B: 生物界面, 2020, 194:111158-111167.
doi: 10.1016/j.colsurfb.2020.111158
Ye J P, Gong J S, Su C, et al. Fabrication and characterization of high molecular keratin based nanofibrous membranes for wound healing. Colloids and Surfaces B: Biointerfaces, 2020, 194:111158-111167.
doi: 10.1016/j.colsurfb.2020.111158
[21] 尹海磊, 邹云雯, 褚言琛, 等. 角蛋白人工腱膜预防全椎板切除术后硬脊膜黏连, 中国矫形外科杂志, 2007, 15(4):287-291.
Yin H L, Zou Y W, Chu Y C, et al. Keratin aponeurosis to prevent dural adhesion after total laminectomy, Orthopedic Journal of China, 2007, 15(4):287-291.
[22] Barati D, Kader S, Pajoum Shariati S R, et al. Synthesis and characterization of photo-cross-linkable keratin hydrogels for stem cell encapsulation. Biomacromolecules, 2017, 18(2):398-412.
doi: 10.1021/acs.biomac.6b01493
[23] Sadeghi S, Nourmohammadi J, Ghaee A, et al. Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. International Journal of Biological Macromolecules, 2020, 147:1239-1247.
doi: S0141-8130(19)34286-2 pmid: 31739046
[24] Liu P C, Wu Q, Li Y M, et al. DOX-Conjugated keratin nanoparticles for pH-sensitive drug delivery. Colloids and Surfaces B: Biointerfaces, 2019, 181:1012-1018.
doi: 10.1016/j.colsurfb.2019.06.057
[25] Zhi X L, Wang Y F, Li P F, et al. Preparation of keratin/chlorhexidine complex nanoparticles for long-term and dual stimuli-responsive release. RSC Advances, 2015, 5(100):82334-82341.
doi: 10.1039/C5RA16253J
[26] Abbasi F, Tavakkoli Yaraki M, Farrokhnia A, et al. Keratin nanoparticles obtained from human hair for removal of crystal violet from aqueous solution: Optimized by Taguchi method. International Journal of Biological Macromolecules, 2020, 143:492-500.
doi: 10.1016/j.ijbiomac.2019.12.065
[27] 闫文丽, 黄兆胜, 曾晓会, 等. 姜黄素在caco-2细胞模型中的吸收机制研究. 今日药学, 2011, 21(11):668-671, 683.
Yan W L, Huang Z S, Zeng X H, et al. Absorption mechanism of curcumin across caco-2 cell model. Pharmacy Today, 2011, 21(11):668-671, 683.
[1] 孙莉萍,徐宛,李孟伟,曾茹,翁建. 孢粉素的物理化学性质和生物医学应用研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 92-100.
[2] 袁小晶,尹海梦,樊晓玮,何俊林,郝石磊,季金苟. 角蛋白/海藻酸钠/聚丙烯酰胺水凝胶皮肤敷料的制备及创口修复研究[J]. 中国生物工程杂志, 2021, 41(8): 17-24.
[3] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[4] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[5] 方元,张同伟,曹长乾,田杰生,林巍. 趋磁细菌多样性与应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 73-82.
[6] 潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.
[7] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[8] 陈宽婷, 姚俊, 阮文辉, 魏钦俊, 鲁雅洁, 曹新. 新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究[J]. 中国生物工程杂志, 2013, 33(4): 101-105.
[9] 黄凯宗 王文研 张光亚. 类弹性蛋白多肽及其在生物医学材料的应用[J]. 中国生物工程杂志, 2010, 30(05): 128-132.
[10] 袁亚莉, 许金生, 邓健, 唐国华, 许金华. CD45新型免疫荧光标记与检测方法研究[J]. 中国生物工程杂志, 2005, 25(02): 73-75,77.
[11] 金华利, 张富春, 张爱莲, 李轶杰, 王宾. 钠米颗粒介导质粒DNA转染体外真核细胞[J]. 中国生物工程杂志, 2003, 23(10): 71-75.