Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 90-102    DOI: 10.13523/j.cb.2103055
综述     
噬菌体重组酶系统在合成生物学中的应用*
郭曼曼1,2,3,田开仁1,2,3,乔建军1,2,3,李艳妮1,2,**()
1 天津大学化工学院制药工程系 天津 300072
2 天津大学 系统生物工程教育部重点实验室 天津 300072
3 天津化学化工协同创新中心合成生物学平台 天津 300072
Application of Phage Recombinase Systems in Synthetic Biology
GUO Man-man1,2,3,TIAN Kai-ren1,2,3,QIAO Jian-jun1,2,3,LI Yan-ni1,2,**()
1 Department of Pharmaceutical Engineering, College of Chemical Engineering, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Systematic Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
3 Key Laboratory of Systematic Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
 全文: PDF(1682 KB)   HTML
摘要:

合成生物学技术采用工程化设计理念,对生物体进行有目标的设计、改造乃至重新合成,对重塑非自然功能的“人造生命”具有重要意义。噬菌体重组系统具有高效、精确和广谱适用性等特点,在基因工程、代谢工程以及生物治疗等合成生物学领域得到了广泛的应用。从基因电路、体内遗传改造和体外重组等方面全面阐述了噬菌体重组系统在合成生物学研究的现状及热点,对当前该系统的局限性进行了探讨,并就未来的研究和发展趋势进行了展望。

关键词: 合成生物学噬菌体重组酶基因电路遗传改造体外重组    
Abstract:

Synthetic biology is an emerging filed that aims to de novo design and synthesis of biological functional modules, gene circuits or artificial life with the standardized bioparts based on engineering principles. Since its inception in 1998, phage recombinase-mediated site-specific recombination, also known as recombineering, has revolutionized synthetic biology. Due to high efficiency, high precision, and broad-spectrum applicability, phage recombinases have been developed into powerful synthetic biology tools such as gene editing, DNA assembly, and gene-directed insertion. Yet, some applications, such as gene circuits, biocomputing, and biotherapy, need controlled excision, and this requires the number of well-characterized integrases and RDFs. Here, the classification and applicability of phage recombinases and focused on the application of phage recombinase systems in gene circuits design and construction, in vivo genetic modification and in vitro recombination were briefly introduced. Besides, the challenges of phage recombinase as tools for genetic engineering and sophisticated gene expression regulation as well as prospects for phage recombinases were analyzed.

Key words: Synthetic biology    Phage recombinase    Gene circuit    Genetic modification    In vitro recombination
收稿日期: 2021-03-23 出版日期: 2021-08-31
ZTFLH:  Q814  
基金资助: * 国家自然科学基金资助项目(31770076)
通讯作者: 李艳妮     E-mail: liyanni@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭曼曼
田开仁
乔建军
李艳妮

引用本文:

郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.

GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology. China Biotechnology, 2021, 41(8): 90-102.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103055        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/90

分类 来源 重组酶 适用宿主
酪氨酸家族 大肠杆菌 Cre 放线菌[12]、植物[13]、线虫[14]、果蝇[15]、斑马鱼[16]、哺乳动物[17]、葡萄球菌[18]、酵母[19]、芽孢杆菌[20]、乳酸菌[21]、黄色黏球菌[22]
沙门氏菌 Dre 放线菌[23]、小鼠[24]
溶珊瑚弧菌 Vika 小鼠[24]、酿酒酵母[25]
大肠杆菌 φ24B 志贺氏菌[26]、大肠杆菌[27]
丝氨酸家族 链霉菌 φC31 放线菌[28]、果蝇[29]、爪蟾[30]、农杆菌[31]、拟南芥[32]、哺乳动物[33]、家蚕[34]、食气梭菌[35]
φBT1 放线菌[28, 36]、哺乳动物[37]、酵母[38]
TG1 大肠杆菌[39]、α变形菌[40]、放线菌[28]
R4 放线菌[28]、哺乳动物[41]、酵母[38]
SV1 放线菌[28]
分枝杆菌 Bxb1 分枝杆菌[42]、大肠杆菌[43]、哺乳动物[44]、脊椎动物[45]、原生动物[46]、果蝇[47]、拟南芥[48]、烟草[49]
φRV1 哺乳动物[50]
单核细胞增生李斯特菌 A118 哺乳动物[50]、酵母[38]、乳酸菌、大肠杆菌[43]
U153 植物[51]、哺乳动物[50]
乳酸菌 TP901-1 乳酸菌[52]、大肠杆菌[43]、哺乳动物[53]、酵母[38]、果蝇[54]
粪肠球菌 φFC1 粪肠球菌、哺乳动物[50]
蜡样芽胞杆菌 大肠杆菌、酵母、哺乳动物[38, 45]
表1  噬菌体重组酶的分类及适用宿主
宿主 整合酶类别 重组片段及效率 重组效率影响因素1
大肠杆菌[60] Int 2、Int 3、Int 4、Int 5、Int 7、Int 8、Int 9、Int 10、Int 11、Int 12、Int 13 可永久记录1.375字节信息,区分2 048个组合事件;Int 8 2 h内完全转换,大多重组酶诱导8 h实现>90%的转换 宿主生长温度,细胞环境[61],酶和宿主密码子偏好性差异,两个特异位点间的距离,不同酶之间的正交性以及酶表达水平
多形拟杆菌[62] Int 7、Int 8、Int 9、Int 12 将4个酶的att阵列整合至基因组;>90%
大肠杆菌[43] TP901-1、Bxb1、A118 控制16个基因状态;97%
HEK 293T、Jurkat T[44] Cre、φC31、Bxb1 HEK 293T和Jurkat T细胞中构建了113个基因电路;96.5%
拟南芥[63] Cre Cre蛋白控制基因表达
烟草[64] φC31 翻转启动子控制基因转录,attB×attP重组70%~100%,attL×attR重组约40%
表2  基于噬菌体重组系统的基因电路
图1  基于噬菌体重组酶的基因电路(根据参考文献[8,44,60]修改)
方法 应用 效率 优缺点
位点特异性重组 基因敲除、插入 可单次敲除468 kb,插入>100 kb 适于长片段敲除、无痕/多拷贝整合,宿主范围广;常需要引入识别位点
Red/ET同源重组[69] 基因敲除、替换和插入 单次可敲除或插入5 kb左右片段 同源臂较短;操作繁琐,长片段敲除和插入不适用
Tn7样转座系
[70]
基因插入 插入10 kb, 100% 安全,高效,无需启动DNA损伤修复系统;转座排他性强,动物细胞插入和>10 kb片段的插入仍难以实现
CRISPR系
[71,72,73]
基因敲除、失活和插入 Cas3缺失424 kb效率>80%,Di-CRISPR可插入24 kb,CRISPR+Red可插入>100 kb 周期短,编辑效率高;原核生物应用有限,不同宿主中修复机制有差异
表3  常见的基因编辑工具
图2  噬菌体重组酶在体内遗传改造中的应用(根据参考文献[28,35,74]修改)
应用类别 宿主 整合酶类别 重组片段长度及效率 重组效率影响因素1
基因敲除 谷氨酸棒杆菌[12] Cre 可敲除0.2~186 kb的片段,最终共缺失393.6 kb的331个基因 宿主生长温度,细胞环境[61],酶和宿主密码子偏好性差异,特异性识别位点的序列,酶的表达水平
除虫链霉菌[74] Cre 累积删除1.4 Mb的片段
链霉菌[23] Dre 最长缺失83 kb;80%
黄色黏球菌[22] Cre 敲除468 kb片段;≈100%
小鼠[75] PTDM/TAT-Cre 原代T细胞中敲除2个必需基因;95%
基因整合 酿酒酵母[19] Cre、δ序列 整合约16拷贝;>75% 宿主生长温度,细胞环境[61],酶和宿主密码子偏好性差异,两个特异性识别位点间的距离,酶识别天然att位点的特异性,基因插入位置,不同酶之间的正交性以及酶的表达水平
耶氏解脂酵母[76] Cre、酵母26S rDNA 整合18 kb的类黄酮合成途径;>80%
食气梭菌[35] φC31、φCD27 整合9 kb丁酸合成途径;100%
放线菌[28] φC31、φBT1、R4、
SV1、TG1
一步整合4拷贝72 kb片段,2步可整合5拷贝;3拷贝整合效率100%,4拷贝整合效率90%
水稻[13] Cre 水稻基因组整合约8 kb;63%
果蝇[5] φC31 果蝇基因组插入146 kb;15~50 kb插入效率约10%,>50 kb效率2%~4%
[77] HTNCre 携带反式转录激活因子(TAT)的细胞穿透肽和核定位信号(NLS)肽的Cre酶,整合后标记基因去除;95.2%
CHO[78] Cre CHO细胞整合4个拷贝
HEK 293[33] φC31 HEK 293细胞基因整合;97.5%
表4  噬菌体重组酶在体内遗传改造中的应用
方法 应用 效率 优缺点
噬菌体重组系统 体外组装、基因组大片段克隆 可组装>60 kb质粒,克隆55 kb片段 不受酶切位点、GC含量和片段间重复序列的限制;超长片段的组装和克隆还有待研究
RecET[90] 基因组大片段克隆 50 kb 操作方便;需要限制性酶切位点,哺乳动物大片段克隆难以实现
ExoCET[91] 基因组大片段克隆 细菌106 kb,哺乳动物>50 kb 高保真;容易发生错配
CRISPR/Cas9[92] 基因组大片段克隆 100 kb 简单,快速;具有碱基偏好性,不同位点编辑效率不同
CRISPR/Cas12a[93] 体外多片段组装 组装2个片段,72%~100% 高效,通用性和特异性强,产生黏性末端;反应成分复杂,多片段组装效率低
CasHRA[94] CRISPR/Cas9+酵母同源重组组装 1.03 Mb 组装多个长片段,适于构建基因组的最后阶段;对片段间同源序列的特异性要求高
Gibson assembly[95] 体外多片段组装 900 kb 高效,无缝,适用于超长片段;<200 bp和高GC含量片段不适用,需要PCR制备片段
Golden Gate[96] 体外多片段组装 100 bp~15 kb,2~24个片段 快速,高效,可组装有重复序列的片段;基因和载体内部不能含有限制性酶切位点
表5  常用的体外重组技术
基因来源 整合酶类别 重组片段及效率 重组效率影响因素1
- φBT1[7] 组装7个片段>90%,得到62.4 kb质粒 反应温度和时间,缓冲体系及pH,反应液总体积,底物及酶的加入量,组装片段数量及片段长度
- ΦC31、Bxb1[97] 组装3个片段4 h, 5个片段24 h
链霉菌[89] TG1、SPBc、Bxb1、Int 4、Int 7、Int 9 组装5个片段的11 kb质粒: 75%;组装4个片段的20 kb质粒: 50%
糖多孢红霉菌[98] φBT1 克隆55 kb片段,≈100%
真菌[99] Cre 体外>45 kb片段克隆
放线菌和杆菌[100] Cre、CRISPR/Cas12a Cas12a剪切基因簇,Cre介导体内环化得到47个10~113 kb的片段, 57%~100%
表6  噬菌体重组酶在体外重组中的应用
图3  噬菌体重组酶在体外重组中的应用(根据参考文献[97-98,100]修改)
[1] Service P. On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux. Research in Microbiology, 2007, 158(7):553-554.
doi: 10.1016/j.resmic.2007.07.005
[2] Pires D P, Cleto S, Sillankorva S, et al. Genetically engineered phages: a review of advances over the last decade. Microbiology and Molecular Biology Reviews, 2016, 80(3):523-543.
doi: 10.1128/MMBR.00069-15
[3] Lemire S, Yehl K M, Lu T K. Phage-based applications in synthetic biology. Annual Review of Virology, 2018, 5(1):453-476.
doi: 10.1146/annurev-virology-092917-043544
[4] Sauer B, Henderson N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. PNAS, 1988, 85(14):5166-5170.
pmid: 2839833
[5] Venken K J T, He Y, Hoskins R A, et al. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science, 2006, 314(5806):1747-1751.
pmid: 17138868
[6] Hartley J L, Temple G F, Brasch M A. DNA cloning using in vitro site-specific recombination. Genome Research, 2000, 10(11):1788-1795.
pmid: 11076863
[7] Zhang L, Zhao G P, Ding X M. Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination. Scientific Reports, 2011, 1:141.
doi: 10.1038/srep00141 pmid: 22355658
[8] Bonnet J, Subsoontorn P, Endy D. Rewritable digital data storage in live cells via engineered control of recombination directionality. PNAS, 2012, 109(23):8884-8889.
doi: 10.1073/pnas.1202344109
[9] Olorunniji F J, Rosser S J, Stark W M. Site-specific recombinases: molecular machines for the genetic revolution. The Biochemical Journal, 2016, 473(6):673-684.
doi: 10.1042/BJ20151112
[10] Grindley N D F, Whiteson K L, Rice P A. Mechanisms of site-specific recombination. Annual Review of Biochemistry, 2006, 75:567-605.
pmid: 16756503
[11] 张霖, 赵国屏, 丁晓明. 位点特异性重组系统的机理和应用. 中国科学: 生命科学, 2010, 40(12):1090-1111.
Zhang L, Zhao G P, Ding X M. Site-specific recombination systems: mechanisms and applications. Scientia Sinica (Vitae), 2010, 40(12):1090-1111.
[12] Tsuge Y, Suzuki N, Inui M, et al. Random segment deletion based on IS31831 and Cre/loxP excision system in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2007, 74(6):1333-1341.
pmid: 17221197
[13] Pathak B, Srivastava V. Recombinase-mediated integration of a multigene cassette in rice leads to stable expression and inheritance of the stacked locus. bioRxiv, 2020, DOI: 10.1101/2020.04.16.045435.
doi: 10.1101/2020.04.16.045435
[14] Hubbard E J A. FLP/FRT and Cre/lox recombination technology in C. elegans. Methods, 2014, 68(3):417-424.
doi: 10.1016/j.ymeth.2014.05.007 pmid: 24874786
[15] Frickenhaus M, Wagner M, Mallik M, et al. Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog Cabeza in neurons. Scientific Reports, 2015, 5:9107.
doi: 10.1038/srep09107 pmid: 25772687
[16] Yao S Q, Yuan P, Ouellette B, et al. RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations. Nature Methods, 2020, 17(4):422-429.
doi: 10.1038/s41592-020-0774-3
[17] Hwang S U, Eun K, Yoon J D, et al. Production of transgenic pigs using a pGFAP-CreERT2/EGFPLoxP inducible system for central nervous system disease models. Journal of Veterinary Science, 2018, 19(3):434.
doi: 10.4142/jvs.2018.19.3.434
[18] Leibig M, Krismer B, Kolb M, et al. Marker removal in staphylococci via Cre recombinase and different lox sites. Applied and Environmental Microbiology, 2008, 74(5):1316-1323.
doi: 10.1128/AEM.02424-07
[19] Choi H J, Kim Y H. Simultaneous and sequential integration by cre/loxP site-specific recombination in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology, 2018, 28(5):826-830.
doi: 10.4014/jmb.1802.02004
[20] Guan Z B, Wang K Q, Shui Y, et al. Establishment of a markerless multiple-gene deletion method based on Cre/loxP mutant system for Bacillus pumilus. Journal of Basic Microbiology, 2017, 57(12):1065-1068.
doi: 10.1002/jobm.v57.12
[21] Petersen K V, Martinussen J, Jensen P R, et al. Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA. Applied and Environmental Microbiology, 2013, 79(12):3563-3569.
doi: 10.1128/AEM.00346-13 pmid: 23542630
[22] Yang Y J, Singh R, Lan X, et al. Genome editing in model strain Myxococcus xanthus DK1622 by a site-specific cre/loxP recombination system. Biomolecules, 2018, 8(4):137.
doi: 10.3390/biom8040137
[23] Herrmann S, Siegl T, Luzhetska M, et al. Site-specific recombination strategies for engineering actinomycete genomes. Applied and Environmental Microbiology, 2012, 78(6):1804-1812.
doi: 10.1128/AEM.06054-11 pmid: 22247163
[24] Karimova M, Baker O, Camgoz A, et al. A single reporter mouse line for Vika, Flp, Dre, and Cre-recombination. Scientific Reports, 2018, 8:14453.
doi: 10.1038/s41598-018-32802-7 pmid: 30262904
[25] Lin Q H, Qi H, Wu Y, et al. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces cerevisiae. Scientific Reports, 2015, 5:15249.
doi: 10.1038/srep15249
[26] James C E, Stanley K N, Allison H E, et al. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Applied and Environmental Microbiology, 2001, 67(9):4335-4337.
doi: 10.1128/AEM.67.9.4335-4337.2001 pmid: 11526041
[27] Mohaisen M R, McCarthy A J, Adriaenssens E M, et al. The site-specific recombination system of the Escherichia coli bacteriophage Φ24B. Frontiers in Microbiology, 2020, 11:578056.
doi: 10.3389/fmicb.2020.578056
[28] Li L, Wei K K, Liu X C, et al. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metabolic Engineering, 2019, 52:153-167.
doi: 10.1016/j.ymben.2018.12.001
[29] Voutev R, Mann R S. Robust ΦC31-mediated genome engineering in Drosophila melanogaster using minimal attP/attB phage sites. G3 (Bethesda, Md), 2018, 8(5):1399-1402.
[30] Allen B G, Weeks D L. Transgenic Xenopus laevis embryos can be generated using φC31 integrase. Nature Methods, 2005, 2(12):975-979.
doi: 10.1038/nmeth814
[31] Cody J P, Graham N D, Zhao C Z, et al. Site-specific recombinase genome engineering toolkit in maize. Plant Direct, 2020, 4(3):e00209.
[32] Thomson J G, Chan R, Thilmony R, et al. PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome. BMC Biotechnology, 2010, 10(1):1-12.
doi: 10.1186/1472-6750-10-1
[33] Guha T K, Calos M P. Nucleofection of phiC31 integrase protein mediates sequence-specific genomic integration in human cells. Journal of Molecular Biology, 2020, 432(13):3950-3955.
doi: 10.1016/j.jmb.2020.04.019
[34] Wang F, Ji Y T, Tian C, et al. An inducible constitutive expression system in Bombyx mori mediated by phiC31 integrase. Insect Science, 2020: 1744-7917.12866.
[35] Huang H, Chai C S, Yang S, et al. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii. Metabolic Engineering, 2019, 52:293-302.
doi: S1096-7176(18)30350-1 pmid: 30633974
[36] Herisse M, Porter J L, Guerillot R, et al. The ΦBT1 large serine recombinase catalyzes DNA integration at pseudo-attB sites in the genus Nocardia. PeerJ, 2018, 6:e4784. DOI: 10.7717/peerj.4784.
doi: 10.7717/peerj.4784
[37] Xu Z Y, Lee N C O, Dafhnis-Calas F, et al. Site-specific recombination in Schizosaccharomyces pombe and systematic assembly of a 400kb transgene array in mammalian cells using the integrase of Streptomyces phage ΦBT1. Nucleic Acids Research, 2008, 36(1):e9.
doi: 10.1093/nar/gkm1123
[38] Xu Z Y, Brown W R A. Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae. BMC Biotechnology, 2016, 16:13.
doi: 10.1186/s12896-016-0241-5
[39] Muroi T, Kokuzawa T, Kihara Y, et al. TG1 integrase-based system for site-specific gene integration into bacterial genomes. Applied Microbiology and Biotechnology, 2013, 97(9):4039-4048.
doi: 10.1007/s00253-012-4491-4
[40] Morita K, Morimura K, Fusada N, et al. Site-specific genome integration in alphaproteobacteria mediated by TG1 integrase. Applied Microbiology and Biotechnology, 2012, 93(1):295-304.
doi: 10.1007/s00253-011-3545-3
[41] Olivares E C, Hollis R P, Calos M P. Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001, 278(1-2):167-176.
pmid: 11707334
[42] Kim A I, Ghosh P, Aaron M A, et al. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Molecular Microbiology, 2003, 50(2):463-473.
doi: 10.1046/j.1365-2958.2003.03723.x
[43] Roquet N, Soleimany A P, Ferris A C, et al. Synthetic recombinase-based state machines in living cells. Science, 2016, 353(6297): aad8559.
[44] Weinberg B H, Hang Pham N T, Caraballo L D, et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nature Biotechnology, 2017, 35(5):453-462.
doi: 10.1038/nbt.3805
[45] Xu Z Y, Thomas L, Davies B, et al. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnology, 2013, 13(1):1-17.
doi: 10.1186/1472-6750-13-1
[46] Balabaskaran-Nina P, Desai S A. Diverse target gene modifications in Plasmodium falciparum using Bxb1 integrase and an intronic attB. Parasites & Vectors, 2018, 11(1):1-8.
[47] Voutev R, Mann R S. Bxb1 phage recombinase assists genome engineering inDrosophila Melanogaster. BioTechniques, 2017, 62(1):37-38.
[48] Thomson J G, Chan R, Smith J, et al. The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis. BMC Biotechnology, 2012, 12:9.
doi: 10.1186/1472-6750-12-9 pmid: 22436504
[49] Li R Y, Han Z G, Hou L L, et al. Method for biolistic site-specific integration in plants catalyzed by Bxb1 integrase. Chromosome and Genomic Engineering in Plants, 2016. DOI: 10.1007/978-1-4939-4931-1_2.
doi: 10.1007/978-1-4939-4931-1_2
[50] Keravala A, Groth A C, Jarrahian S, et al. A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Molecular Genetics and Genomics, 2006, 276(2):135-146.
doi: 10.1007/s00438-006-0129-5
[51] Thomson J G, Ow D W. Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis, 2006, 44(10):465-476.
pmid: 16981199
[52] Koko I, Song A A L, Masarudin M J, et al. Engineering integrative vectors based on phage site-specific recombination mechanism for Lactococcus lactis. BMC Biotechnology, 2019, 19(1):1-12.
doi: 10.1186/s12896-018-0491-5
[53] Stoll S M, Ginsburg D S, Calos M P. Phage TP901-1 site-specific integrase functions in human cells. Journal of Bacteriology, 2002, 184(13):3657-3663.
doi: 10.1128/JB.184.13.3657-3663.2002
[54] Voutev R, Mann R S. TP901-1 phage recombinase facilitates genome engineering in Drosophila melanogaster. G3 (Bethesda, Md), 2019, 9(4):983-986.
[55] Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767):339-342.
doi: 10.1038/35002131
[56] Ochoa-Fernandez R, Samodelov S L, Brandl S M, et al. Optogenetics in plants: red/far-red light control of gene expression. Methods in Molecular Biology (Clifton, N J), 2016, 1408:125-139.
[57] Merrick C A, Zhao J, Rosser S J. Serine integrases: advancing synthetic biology. ACS Synthetic Biology, 2018, 7(2):299-310.
doi: 10.1021/acssynbio.7b00308
[58] Liu K, Jin H W, Zhou B. Genetic lineage tracing with multiple DNA recombinases: a user's guide for conducting more precise cell fate mapping studies. Journal of Biological Chemistry, 2020, 295(19):6413-6424.
doi: 10.1074/jbc.REV120.011631
[59] Tian X Y, Zhou B. Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution. Journal of Biological Chemistry, 2021, 296:100509.
doi: 10.1016/j.jbc.2021.100509
[60] Yang L, Nielsen A A K, Fernandez-Rodriguez J, et al. Permanent genetic memory with >1-byte capacity. Nature Methods, 2014, 11(12):1261-1266.
doi: 10.1038/nmeth.3147 pmid: 25344638
[61] Stark W M. Making serine integrases work for us. Current Opinion in Microbiology, 2017, 38:130-136.
doi: 10.1016/j.mib.2017.04.006
[62] Mimee M, Tucker A C, Voigt C A, et al. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Systems, 2015, 1(1):62-71.
pmid: 26918244
[63] Furuhata Y, Sakai A, Murakami T, et al. A method using electroporation for the protein delivery of Cre recombinase into cultured Arabidopsis cells with an intact cell wall. Scientific Reports, 2019, 9:2163.
doi: 10.1038/s41598-018-38119-9 pmid: 30770845
[64] Bernabé-Orts J M, Quijano-Rubio A, Vazquez-Vilar M, et al. A memory switch for plant synthetic biology based on the phage ΦC31 integration system. Nucleic Acids Research, 2020, 48(6):3379-3394.
doi: 10.1093/nar/gkaa104 pmid: 32083668
[65] Pokhilko A, Zhao J, Ebenhöh O, et al. The mechanism of ΦC31 integrase directionality: experimental analysis and computational modelling. Nucleic Acids Research, 2016: gkw616.
[66] Pokhilko A, Zhao J, Stark W M, et al. A simplified mathematical model of directional DNA site-specific recombination by serine integrases. Journal of the Royal Society Interface, 2017, 14(126):20160618.
doi: 10.1098/rsif.2016.0618
[67] Park Y, Espah Borujeni A, Gorochowski T E, et al. P recision design of stable genetic circuits carried in highly-insulated E. coli genomic landing pads. Molecular Systems Biology, 2020, 16(8). DOI: 10.15252/msb.20209584.
doi: 10.15252/msb.20209584
[68] Duportet X, Wroblewska L, Guye P, et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Research, 2014, 42(21):13440-13451.
doi: 10.1093/nar/gku1082 pmid: 25378321
[69] 刘陆罡, 纪晓俊, 沈梦秋, 等. 大肠杆菌无痕重组的策略与应用. 中国生物工程杂志, 2014, 34(8):88-96.
Liu L G, Ji X J, Shen M Q, et al. Red-mediated scarless recombination: strategies and applications. China Biotechnology, 2014, 34(8):88-96.
[70] Vo P L H, Ronda C, Klompe S E, et al. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nature Biotechnology, 2021, 39(4):480-489.
doi: 10.1038/s41587-020-00745-y
[71] Csörgö B, León L M, Chau-Ly I J, et al. A compact Cascade-Cas3 system for targeted genome engineering. Nature Methods, 2020, 17(12):1183-1190.
doi: 10.1038/s41592-020-00980-w
[72] Shi S B, Liang Y Y, Zhang M M, et al. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metabolic Engineering, 2016, 33:19-27.
doi: 10.1016/j.ymben.2015.10.011
[73] Wang K H, Fredens J, Brunner S F, et al. Defining synonymous codon compression schemes by genome recoding. Nature, 2016, 539(7627):59-64.
doi: 10.1038/nature20124
[74] Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(6):2646-2651.
[75] Sgolastra F, Kuksin C A, Gonzalez-Perez G, et al. Enhanced TAT-cre protein transduction for efficient gene recombination in T cells. ACS Applied Bio Materials, 2018, 1(2):444-451.
doi: 10.1021/acsabm.8b00153
[76] Lv Y, Edwards H, Zhou J W, et al. Combining 26s rDNA and the cre-loxP system for iterative gene integration and efficient marker curation in Yarrowia lipolytica. ACS Synthetic Biology, 2019, 8(3):568-576.
doi: 10.1021/acssynbio.8b00535
[77] Huang X L, Zou X, Xu Z Q, et al. Efficient deletion of LoxP-flanked selectable marker genes from the genome of transgenic pigs by an engineered Cre recombinase. Transgenic Research, 2020, 29(3):307-319.
doi: 10.1007/s11248-020-00200-3
[78] Sergeeva D, Lee G M, Nielsen L K, et al. Multicopy targeted integration for accelerated development of high-producing Chinese hamster ovary cells. ACS Synthetic Biology, 2020, 9(9):2546-2561.
doi: 10.1021/acssynbio.0c00322 pmid: 32835482
[79] Kopertekh L, Krebs E, Guzmann F. Improvement of conditional Cre-lox system through application of the regulatory sequences from Cowpea mosaic virus. Plant Biotechnology Reports, 2018, 12(2):127-137.
doi: 10.1007/s11816-018-0477-8
[80] Jenickova I, Kasparek P, Petrezselyova S, et al. Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods, 2021, 191:87-94.
doi: 10.1016/j.ymeth.2020.07.005 pmid: 32717290
[81] Son J W, Shin J J, Kim M G, et al. Keratinocyte-specific knockout mice models via Cre-loxP recombination system. Molecular & Cellular Toxicology, 2021, 17(1):15-27.
[82] Li L, Zheng G S, Chen J, et al. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metabolic Engineering, 2017, 40:80-92.
doi: 10.1016/j.ymben.2017.01.004
[83] Chen W Q, Ow D W. Precise, flexible and affordable gene stacking for crop improvement. Bioengineered, 2017, 8(5):451-456.
doi: 10.1080/21655979.2016.1276679
[84] Sumikawa T, Ohno S, Watanabe T, et al. Site-specific integration by recruitment of a complex of ΦC31 integrase and donor DNA to a target site by using a tandem, artificial zinc-finger protein. Biochemistry, 2018, 57(50):6868-6877.
doi: 10.1021/acs.biochem.8b00979
[85] Ahmed H M M, Heese F, Wimmer E A. Improvement on the genetic engineering of an invasive agricultural pest insect, the cherry vinegar fly, Drosophila suzukii. BMC Genetics, 2020, 21(Suppl 2):139.
doi: 10.1186/s12863-020-00940-5
[86] Huang J, Wang A T, Huang C, et al. Generation of marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and cre/loxP systems. Genes, 2020, 11(8):951.
doi: 10.3390/genes11080951
[87] Carver J, Ng D, Zhou M, et al. Maximizing antibody production in a targeted integration host by optimization of subunit gene dosage and position. Biotechnology Progress, 2020, 36(4):e2967.
[88] Kim S, Kim D, Cho S W, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 2014, 24(6):1012-1019.
doi: 10.1101/gr.171322.113
[89] Gao H, Taylor G, Evans S K, et al. Application of serine integrases for secondary metabolite pathway assembly in Streptomyces. Synthetic and Systems Biotechnology, 2020, 5(2):111-119.
[90] Wang H, Li Z, Jia R, et al. RecET direct cloning and Redalphabeta recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nature Protocols, 2016, 11(7):1175-1190.
doi: 10.1038/nprot.2016.054
[91] Wang H L, Li Z, Jia R N, et al. ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. Nucleic Acids Research, 2018, 46(5):e28.
doi: 10.1093/nar/gkx1249
[92] Jiang W J, Zhu T F. Targeted isolation and cloning of 100-kb microbial genomic sequences by Cas9-assisted targeting of chromosome segments. Nature Protocols, 2016, 11(5):960-975.
doi: 10.1038/nprot.2016.055
[93] Wang L P, Wang H J, Liu H Y, et al. Improved CRISPR-Cas12a-assisted one-pot DNA editing method enables seamless DNA editing. Biotechnology and Bioengineering, 2019, 116(6):1463-1474.
doi: 10.1002/bit.v116.6
[94] Zhou J T, Wu R H, Xue X L, et al. CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA. Nucleic Acids Research, 2016, 44(14):e124.
doi: 10.1093/nar/gkw475
[95] Gibson D G, Young L, Chuang R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5):343-345.
doi: 10.1038/nmeth.1318
[96] Potapov V, Ong J L, Kucera R B, et al. Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synthetic Biology, 2018, 7(11):2665-2674.
doi: 10.1021/acssynbio.8b00333
[97] Olorunniji F J, Merrick C, Rosser S J, et al. Multipart DNA assembly using site-specific recombinases from the large serine integrase family. Site-Specific Recombinases, 2017. DOI: 10.1007/978-1-4939-7169-5_19.
doi: 10.1007/978-1-4939-7169-5_19
[98] Dai R X, Zhang B, Zhao G P, et al. Site-specific recombination for cloning of large DNA fragments in vitro. Engineering in Life Sciences, 2015, 15(6):655-659.
doi: 10.1002/elsc.201400267
[99] Nguyen H N, Ishidoh K I, Kinoshita H, et al. Targeted cloning of a large gene cluster from Lecanicillium genome by Cre/loxP based method. Journal of Microbiological Methods, 2018, 150:47-54.
doi: S0167-7012(18)30318-X pmid: 29802868
[100] Enghiad B, Huang C S, Guo F, et al. Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination. Nature Communications, 2021, 12:1171.
doi: 10.1038/s41467-021-21275-4 pmid: 33608525
[101] Soni A, Augsburg M, Buchholz F, et al. Nearest-neighbor amino acids of specificity-determining residues influence the activity of engineered Cre-type recombinases. Scientific Reports, 2020, 10:13985.
doi: 10.1038/s41598-020-70867-5
[102] Unnikrishnan A, Amero C, Yadav D K, et al. DNA binding induces a cis-to-trans switch in Cre recombinase to enable intasome assembly. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(40):24849-24858.
[103] Shoura M J, Giovan S M, Vetcher A A, et al. Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination. Nucleic Acids Research, 2020, 48(8):4371-4381.
doi: 10.1093/nar/gkaa153 pmid: 32182357
[104] Qu L J, Wang L, Zhu X Y, et al. Global mapping of binding sites for phic31 integrase in transgenic maden-darby bovine kidney cells using ChIP-seq. Hereditas, 2019, 156:3.
doi: 10.1186/s41065-018-0079-z
[105] Lei X L, Wang L, Zhao G P, et al. Site-specificity of serine integrase demonstrated by the attB sequence preference of ΦBT1 integrase. FEBS Letters, 2018, 592(8):1389-1399.
doi: 10.1002/feb2.2018.592.issue-8
[106] Bessen J L, Afeyan L K, Dan c ˙ík V, et al. High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Nature Communications, 2019, 10:1937.
doi: 10.1038/s41467-019-09987-0
[107] Snoeck N, de Mol M L, Van Herpe D, et al. Serine integrase recombinational engineering (SIRE): a versatile toolbox for genome editing. Biotechnology and Bioengineering, 2019, 116(2):364-374.
doi: 10.1002/bit.26854 pmid: 30345503
[108] Gomide M S, Sales T T, Barros L R C, et al. Genetic switches designed for eukaryotic cells and controlled by serine integrases. Communications Biology, 2020, 3:255.
doi: 10.1038/s42003-020-0971-8 pmid: 32444777
[109] Weinberg B H, Cho J H, Agarwal Y, et al. High-performance chemical- and light-inducible recombinases in mammalian cells and mice. Nature Communications, 2019, 10:4845.
doi: 10.1038/s41467-019-12800-7
[110] Valny M, Honsa P, Kirdajova D, et al. Tamoxifen in the mouse brain: implications for fate-mapping studies using the tamoxifen-inducible cre-loxP system. Frontiers in Cellular Neuroscience, 2016, 10:243.
[111] Abram C L, Roberge G L, Hu Y M, et al. Comparative analysis of the efficiency and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. Journal of Immunological Methods, 2014, 408:89-100.
doi: 10.1016/j.jim.2014.05.009
[112] Tian X Y, He L J, Liu K, et al. Generation of a self-cleaved inducible Cre recombinase for efficient temporal genetic manipulation. The EMBO Journal, 2020, 39(4):e102675.
[113] Wu J L, Wang M Y, Yang X P, et al. A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice. Nature Communications, 2020, 11:3708.
doi: 10.1038/s41467-020-17530-9
[114] Yoshimi K, Yamauchi Y, Tanaka T, et al. Photoactivatable Cre knock-in mice for spatiotemporal control of genetic engineering in vivo. Laboratory Investigation, 2021, 101(1):125-135.
doi: 10.1038/s41374-020-00482-5
[115] McLellan M A, Rosenthal N A, Pinto A R. Cre-loxP-mediated recombination: general principles and experimental considerations. Current Protocols in Mouse Biology, 2017, 7(1):1-12.
doi: 10.1002/cpmo.22 pmid: 28252198
[116] Liu R C, Long Q, Zou X P, et al. DNA methylation occurring in Cre-expressing cells inhibits loxP recombination and silences loxP-sandwiched genes. The New Phytologist, 2021, 231(1):210-224.
doi: 10.1111/nph.v231.1
[117] Askora A, Kawasaki T, Fujie M, et al. In vitro characterization of the site-specific recombination system based on genus Habenivirus ΦRSM small serine integrase. Molecular Genetics and Genomics, 2021, 296(3):551-559.
doi: 10.1007/s00438-021-01762-5 pmid: 33575837
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[4] 郑义,郭世英,隋凤翔,杨骐羽,卫雅萱,李晓岩. 群体感应系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(11): 100-109.
[5] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[6] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[7] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[8] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[9] 张玉婷,李伟国,梁冬梅,乔建军,财音青格乐. P450s在萜类合成方面的合成生物学研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 84-96.
[10] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[11] 盛晓菁,齐晓雪,徐蕾,戚智青,刁勇. 基因克隆及组装技术的研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 133-139.
[12] 孙青,刘德华,陈振. 甲醇的生物利用与转化*[J]. 中国生物工程杂志, 2020, 40(10): 65-75.
[13] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[14] 谢华玲,李东巧,迟培娟,杨艳萍. 合成生物学领域专利竞争态势分析[J]. 中国生物工程杂志, 2019, 39(4): 114-123.
[15] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.