Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 1-7    DOI: 10.13523/j.cb.2103060
研究报告     
斑马鱼tbx2b调控心脏房室间隔发育的功能研究*
赵霞1,2,3,朱哲1,2,3,祖尧1,2,3,**()
1 上海海洋大学 科技部海洋生物科学国际联合研究中心 上海 201306
2 上海海洋大学 水产种质资源发掘与利用教育部重点实验室 上海 201306
3 上海海洋大学 国家水生动物病原库 上海 201306
tbx2b Affects Atrioventricular Canal Development in Zebrafish
ZHAO Xia1,2,3,ZHU Zhe1,2,3,ZU Yao1,2,3,**()
1 International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
2 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
3 National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
 全文: PDF(1935 KB)   HTML
摘要:

tbx2是早期心脏发育的关键基因。为进一步探究其对房室间隔(AVC)发育的影响,研究利用CRISPR/Cas9介导的基因敲除技术,成功构建了斑马鱼tbx2b突变体。通过T7E1酶切对其F0进行敲除效率检测,结果显示平均敲除效率约为57.5%。F1进一步筛选获得tbx2b杂合突变体,测序结果显示突变类型为11 bp碱基缺失的移码突变。tbx2b杂合子内交获得纯合子,tbx2b纯合突变体在5 dpf死亡并出现早期心脏环化异常表型。斑马鱼整胚原位杂交实验显示在3 dpf tbx2b纯合突变体中, 心脏腔室分化特异性标志基因nppanppb表达上调并异位表达在AVC,而AVC发育关键基因has2的表达消失。高效构建tbx2b突变体并初探其对下游基因的影响,为后续深入研究tbx2b对心脏AVC发育的作用奠定了基础,同时加深了人们对早期心脏调控网络的认识。

关键词: tbx2b心脏发育房室间隔CRISPR    
Abstract:

tbx2 plays an important role in heart development. To further investigate the gene function in the atrioventricular canal (AVC) development, tbx2b-/- mutation zebrafish was successfully established using the CRISPR/ Cas9 mediated gene knockout technique. The knockout efficiency of F0 was detected by T7E1 assay, and the result showed that the average knockout efficiency was about 57.5%. Sanger sequencing confirmed that tbx2b F1 mutant had a-11bp-base deletion and caused frameshift mutation. Homozygous mutations were lethal in 5 dpf and early embryos suffered from cardiac looping abnormalities. In situ hybridization in 3 dpf tbx2b-/- showed ectopic expression of nppa and nppb, which are chamber-specific marker genes, and significantly decreased expression of has2, which is AVC marker gene. tbx2b -/- mutant was efficiently constructed and effects on downstream genes were discussed, which laid a foundation for further research on the effect of cardiac AVC development and understanding of early cardiac regulatory networks.

Key words: tbx2b    Heart development    Atrioventricular canal    CRISPR
收稿日期: 2021-03-23 出版日期: 2021-08-31
ZTFLH:  Q812  
基金资助: * 国家自然科学基金(31501166);上海市教委晨光计划资助项目(14CG49)
通讯作者: 祖尧     E-mail: yzu@shou.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵霞
朱哲
祖尧

引用本文:

赵霞,朱哲,祖尧. 斑马鱼tbx2b调控心脏房室间隔发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(8): 1-7.

ZHAO Xia,ZHU Zhe,ZU Yao. tbx2b Affects Atrioventricular Canal Development in Zebrafish. China Biotechnology, 2021, 41(8): 1-7.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103060        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/1

斑马鱼tbx2b检测引物(5'-3')
F: GCCTTTTCGCGATACGCATT
R: TCCTTCGCTTCCAGTGTGAC
表1  斑马鱼tbx2b检测引物序列
探针名称 原位杂交探针引物序列(5'-3')
tbx2b F GCTGGGCTCCATCCGGCTTT
tbx2b R GCTCTGGTGCAGGACTGCTGG
nppa F GAGACACTCAGAGATGGCCG
nppa R AGGGTGCTGGAAGACCCTAT
nppb F TTCCCGCTTCAAAGCACAGCCT
nppb R CCTGAGCGCCCGACTGTGT
has2 F GGCCCTATGCATCGCAGCCT
has2 R CGCGCGGTGTATTTCGTGGC
表2  原位杂交探针序列
图1  斑马鱼tbx2b基因的进化地位
图2  CRISPR/ Cas9介导的基因编辑技术敲除斑马鱼tbx2b基因
图3  Tbx2b突变氨基酸序列及其蛋白质结构
图4  tbx2b纯合突变体表型观察及tbx2b原位杂交检测
图5  nppa、nppb和has2原位杂交结果
[1] Hoffman J I E, Kaplan S. The incidence of congenital heart disease. Journal of the American College of Cardiology, 2002, 39(12):1890-1900.
pmid: 12084585
[2] Liu Y J, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. International Journal of Epidemiology, 2019, 48(2):455-463.
doi: 10.1093/ije/dyz009
[3] Pang S C, Liu Y M, Zhao Z Q, et al. Novel and functional sequence variants within the TBX2 gene promoter in ventricular septal defects. Biochimie, 2013, 95(9):1807-1809.
doi: 10.1016/j.biochi.2013.05.007
[4] Liu N, Schoch K, Luo X, et al. Functional variants in TBX2 are associated with a syndromic cardiovascular and skeletal developmental disorder. Human Molecular Genetics, 2018, 27(14):2454-2465.
doi: 10.1093/hmg/ddy146
[5] Verhoeven M C, Haase C, Christoffels V M, et al. Wnt signaling regulates atrioventricular canal formation upstream of BMP and Tbx2. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91(6):435-440.
doi: 10.1002/bdra.20804
[6] Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovascular Research, 2011, 91(2):279-288.
doi: 10.1093/cvr/cvr098 pmid: 21602174
[7] Gut P, Reischauer S, Stainier D Y R, et al. Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiological Reviews, 2017, 97(3):889-938.
doi: 10.1152/physrev.00038.2016
[8] Liu J D, Stainier D Y R. Zebrafish in the study of early cardiac development. Circulation Research, 2012, 110(6):870-874.
doi: 10.1161/CIRCRESAHA.111.246504
[9] Mosimann C, Panáková D, Werdich A A, et al. Chamber identity programs drive early functional partitioning of the heart. Nature Communications, 2015, 6(1):1-10.
[10] Olson E N. Gene regulatory networks in the evolution and development of the heart. Science, 2006, 313(5795):1922-1927.
pmid: 17008524
[11] Clowes C, Boylan M G S, Ridge L A, et al. The functional diversity of essential genes required for mammalian cardiac development. Genesis, 2014, 52(8):713-737.
doi: 10.1002/dvg.v52.8
[12] Harrelson Z, Kelly R G, Goldin S N, et al. Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development, 2004, 131(20):5041-5052.
pmid: 15459098
[13] Shirai M, Imanaka-Yoshida K, Schneider M D, et al. T-box 2, a mediator of Bmp-Smad signaling, induced hyaluronan synthase 2 and Tgf 2 expression and endocardial cushion formation. PNAS, 2009, 106(44):18604-18609.
doi: 10.1073/pnas.0900635106
[14] Christoffels V M, Hoogaars W M H, Tessari A, et al. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Developmental Dynamics, 2004, 229(4):763-770.
pmid: 15042700
[15] Camenisch T D, Spicer A P, Brehm-Gibson T, et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. The Journal of Clinical Investigation, 2000, 106(3):349-360.
doi: 10.1172/JCI10272
[16] Singh R, Hoogaars W M, Barnett P, et al. Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cellular and Molecular Life Sciences, 2012, 69(8):1377-1389.
doi: 10.1007/s00018-011-0884-2
[17] Habets P E M h. Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes & Development, 2002, 16(10):1234-1246.
doi: 10.1101/gad.222902
[18] Chapman DL, Garvey N, Hancock S, et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Developmental Dynamics, 2010, 206(4):379-390.
doi: 10.1002/(ISSN)1097-0177
[19] Ribeiro I, Kawakami Y, Büscher D, et al. Tbx2 and Tbx3 regulate the dynamics of cell proliferation during heart remodeling. PLoS One, 2007, 2(4):e398. DOI: 10.1371/journal.pone.0000398.
doi: 10.1371/journal.pone.0000398
[20] Ma L J, Lu M F, Schwartz R J, et al. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development, 2005, 132(24):5601-5611.
doi: 10.1242/dev.02156
[21] Yamada M, Revelli J P, Eichele G, et al. Expression of chick tbx-2, tbx-3, and tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Developmental Biology, 2000, 228(1):95-105.
pmid: 11087629
[22] Just S, Hirth S, Berger I M, et al. The mediator complex subunit Med10 regulates heart valve formation in zebrafish by controlling Tbx2b-mediated Has2 expression and cardiac jelly formation. Biochemical and Biophysical Research Communications, 2016, 477(4):581-588.
doi: 10.1016/j.bbrc.2016.06.088
[23] Man J, Barnett P, Christoffels V M. Structure and function of the Nppa-Nppb cluster locus during heart development and disease. Cellular and Molecular Life Sciences, 2018, 75(8):1435-1444.
doi: 10.1007/s00018-017-2737-0
[24] Lagendijk A K, de Angelis J E, et al. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume. Development, 2018, 145(12). DOI: 10.1242/dev.160739.
doi: 10.1242/dev.160739
[1] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[2] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[3] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[4] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[5] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[6] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[7] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[8] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[9] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[10] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[11] 黄蕾,万常青,刘美琴,赵敏,郑妍鹏,彭向雷,虞结梅,付远辉,何金生. 利用DNA Assembly方法构建重组腺病毒载体[J]. 中国生物工程杂志, 2021, 41(6): 23-26.
[12] 唐梦童,王兆官,李娇娇,齐浩. 末端脱氧核苷酸转移酶在生物传感及核酸合成领域的应用*[J]. 中国生物工程杂志, 2021, 41(5): 51-64.
[13] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[14] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[15] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.