Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (8): 75-89    DOI: 10.13523/j.cb.2104018
综述     
纳米孔测序信号处理及其在DNA数据存储的应用
葛奇1,张鹏1,韩明哲2,3,杨晋生1,张大璐4,*(),陈为刚1,3
1 天津大学微电子学院 天津 300072
2 天津大学化工学院 天津 300072
3 教育部合成生物学前沿科学中心 天津大学 天津 300072
4 中国生物技术发展中心 北京 100039
Signal Processing for Nanopore Sequencing and Its Application in DNA Data Storage
GE Qi1,ZHANG Peng1,HAN Ming-zhe2,3,YANG Jin-sheng1,ZHANG Da-lu4,*(),CHEN Wei-gang1,3
1 School of Microelectronics, Tianjin University, Tianjin 300072, China
2 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
3 Frontiers Science Center for Synthetic Biology (MOE), Tianjin University, Tianjin 300072, China
4 China National Center for Biotechnology Development, Beijing 100039, China
 全文: PDF(2882 KB)   HTML
摘要:

随着高通量测序技术的不断更新,可以在单个分子水平读取核苷酸序列的第三代测序技术迅速发展,纳米孔测序技术是其具有代表性的单分子测序技术,该技术通过检测DNA单链分子穿过纳米孔时引起的跨膜电流信号的变化,实现碱基识别。纳米孔测序仪在便携性、碱基读取速度、测序读段长度等方面较传统的第一代与第二代测序技术都有明显优势。随着纳米孔测序技术的不断发展成熟,与其配套的各种信号处理与生物信息处理工具也迅速涌现,碱基识别和模型仿真是其中两个较为关键的研究方向。首先介绍纳米孔测序基本原理与信号处理流程,探讨其目前面临的挑战,归纳近年来在碱基识别与纳米孔模型仿真两个方面的主要进展与发展趋势,并用实测数据比较了不同碱基识别方法的性能。继而搭建了纳米孔测序集成仿真平台,为信号处理算法的评估提供支撑。进一步,随着全球数据量的爆发式增长,DNA数据存储正成为未来非常有潜力的海量数据存储方式,采用纳米孔测序读出是一种非常有效的方法。总结了纳米孔测序技术在DNA数据存储中的应用进展,分析了其可行性。分析了基于纳米孔测序实现的人工染色体数据存储的快速读出方法,探讨了与实际测序数据结合的纳米孔测序读段仿真在DNA数据存储中的应用,为开发适合DNA数据存储的方案提供参考。

关键词: 纳米孔测序碱基识别纳米孔信号处理DNA数据存储    
Abstract:

With the continuous update of high-throughput sequencing technologies, the third-generation sequencing technology that can read nucleotide sequences at the single-molecule level has developed rapidly. Nanopore sequencing technology is its representative single-molecule sequencing technology, which realizes base calling by detecting the characteristic changes of electrical current when the DNA single-stranded molecule is passing through a nanopore channel. Compared with the traditional first-generation and the next-generation sequencing (NGS) technologies, the nanopore sequencing of DNA has great advantages in device portability, base acquisition speed and read length, which has attracted much attention. With the continuous development of nanopore sequencing technologies, various signal processing schemes and biological information processing tools for nanopore sequencing have been developed, and base calling and model simulation are two of the key research directions. The fundamental principle and signal processing flow of nanopore sequencing are surveyed, the current challenges are discussed, then the development trend of base calling and nanopore model simulation in recent years are summarized, and the performance of different base calling methods are compared by using real sequencing reads. Then, an integrated simulation platform for the evaluation of signal processing algorithms of nanopore sequencing is developed. Furthermore, with the explosive growth of global data volume, DNA data storage is becoming a promising medium for future massive data storage, and the use of nanopore for sequencing and reading is a very effective method. The application progress of the nanopore sequencing technology for DNA data storage is summarized, and its feasibility is analyzed. The rapid readout method of artificial chromosome data storage based on nanopore sequencing is analyzed, and the application of the simulation of nanopore sequencing reads combined with actual sequencing data in DNA data storage is discussed, which provides a reference for the development of a suitable DNA data storage program.

Key words: Nanopore sequencing    Base calling    Nanopore signal processing    DNA data storage
收稿日期: 2021-04-14 出版日期: 2021-08-31
ZTFLH:  Q819  
通讯作者: 张大璐     E-mail: zhangdl@cncbd.org.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
葛奇
张鹏
韩明哲
杨晋生
张大璐
陈为刚

引用本文:

葛奇,张鹏,韩明哲,杨晋生,张大璐,陈为刚. 纳米孔测序信号处理及其在DNA数据存储的应用[J]. 中国生物工程杂志, 2021, 41(8): 75-89.

GE Qi,ZHANG Peng,HAN Ming-zhe,YANG Jin-sheng,ZHANG Da-lu,CHEN Wei-gang. Signal Processing for Nanopore Sequencing and Its Application in DNA Data Storage. China Biotechnology, 2021, 41(8): 75-89.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2104018        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I8/75

图1  纳米孔测序的基本流程与基本原理
碱基识别软件 是否开源 程序语言 输入数据类型 核心计算模型 开发团队
Nanocall C++ 分段事件 隐马尔科夫模型 David等[41]
Nanonet C++ 分段事件 循环神经网络 ONT公司
DeepNano Python 分段事件 循环神经网络 Boza等[42]
BasecRAWller - 原始电流信号 循环神经网络 Stoiber等[43]
Chiron Python 原始电流信号 循环神经网络 Teng等[44]
Albacore Python 原始电流信号 循环神经网络 ONT公司
Guppy - 原始电流信号 循环神经网络 ONT公司
Scrappie C 分段事件或原始电流信号 循环神经网络 ONT公司
Flappie C 原始电流信号 循环神经网络 ONT公司
表1  纳米孔测序的碱基识别软件比较
图2  碱基识别软件性能比较
图3  IDS有记忆错误模型
仿真软件 程序语言 是否生成仿真读段 是否生成仿真信号 是否模拟噪声特性 开发团队
ReadSim Python Lee等[50]
SiLiCO Python Baker等[51]
NanoSim Python Yang等[52]
DeepSimulator Python Li等[53,54]
NanosigSim Python Chen等[55]
表2  纳米孔测序仿真软件比较
图4  纳米孔测序仿真平台
图5  数据存储专用人工染色体的数据读出验证平台[58]
图6  利用实际测序数据训练的基于三代纳米孔测序的DNA数据存储仿真流程
图7  基于纳米孔测序的仿真数据的寻址方式研究
[1] Kasianowicz J J, Bezrukov S M. On ‘three decades of nanopore sequencing'. Nature Biotechnology, 2016, 34(5):481-482.
doi: 10.1038/nbt.3570 pmid: 27153275
[2] National Institute of Standards and Technology(NIST), Semiconductor Research Corporation (SRC). 2018 Semiconductor synthetic biology roadmap. 2016-03-15. https://www.src.org/library/publication/p095387/p095387.pdf
[3] Semiconductor Industry Association (SIA), Semiconductor Research Corporation (SRC), Decadal plan for semiconductors. 2021-03-15. https://www.src.org/about/decadal-plan/
[4] 伊克巴尔 S M, 巴希尔 R, 德克 C, 等. 刘全俊, 陆祖宏, 谢骁, 等. 译. 纳米孔: 生物分子相互作用传感基础. 北京: 科学出版社, 2013: 1-7.
Iqbal S M, Bashir R, et al. Nanopores: sensing and fundamental biological interactions. Liu Q J, Lu Z H, Xie X, et al. Beijing: Science Press, 2013: 1-7.
[5] 鞠熀先, 张学记, 约瑟夫 W. 纳米生物传感: 原理, 发展与应用. 雷建平, 吴洁, 鞠熀先. 译. 北京: 科学出版社, 2012: 1-8.
Ju H X, Zhang X J, Joseph W. NanoBiosensing: principles, development and application. Lei J P, Wu J, Ju H X. Beijing: Science Press, 2012: 1-8.
[6] 余静文, 陈云飞. 基于微纳制造的下一代基因测序系统研究现状与展望. 中国科学: 技术科学, 2017, 47(4):345-354.
Yu J W, Chen Y F. Research status and prospects of next generation sequencing system based on micro-nano manufacturing. Scientia Sinica (Technologica), 2017, 47(4):345-354.
[7] 陈文辉, 罗军, 赵超. 固态纳米孔: 下一代DNA测序技术: 原理、工艺与挑战. 中国科学: 生命科学, 2014, 44(7):649-662.
Chen W H, Luo J, Zhao C. Solid-state nanopore: the next-generation sequencing technology-principles, fabrication and challenges. Scientia Sinica (Vitae), 2014, 44(7):649-662.
[8] 张宇, 魏胜, 李民权, 等. 用于单个纳米颗粒检测的固态纳米孔器件的仿真与优化. 传感技术学报, 2015, 28(10):1425-1431.
Zhang Y, Wei S, Li M Q, et al. Simulation and optimization of solid-state nanopore for single-nanoparticle detection. Chinese Journal of Sensors and Actuators, 2015, 28(10):1425-1431.
[9] 张庞, 唐鹏, 闫汉, 等. 基于LiCl盐浓度梯度的固态纳米孔DNA分子检测. 微纳电子技术, 2021, 58(1):72-79.
Zhang P, Tang P, Yan H, et al. Detection of DNA molecule with solid-state nanopores based on LiCl salt concentration gradient. Micronanoelectronic Technology, 2021, 58(1):72-79.
[10] Guo B Y, Zeng T, Wu H C. Recent advances of DNA sequencing via nanopore-based technologies. Science Bulletin, 2015, 60(3):287-295.
doi: 10.1007/s11434-014-0707-6
[11] 丁克俭, 张海燕, 胡红刚, 等. 生物大分子纳米孔分析技术研究进展. 分析化学, 2010, 38(2):280-285.
doi: 10.1016/S1872-2040(09)60022-0
Ding K J, Zhang H Y, Hu H G, et al. Progress of research on nanopore-macromolecule detection. Chinese Journal of Analytical Chemistry, 2010, 38(2):280-285.
doi: 10.1016/S1872-2040(09)60022-0
[12] Yuan Z S, Wang C Y, Yi X, et al. Solid-state nanopore. Nanoscale Research Letters, 2018, 13(1):1-10.
doi: 10.1186/s11671-017-2411-3
[13] Deng T, Li M W, Wang Y F, et al. Development of solid-state nanopore fabrication technologies. Science Bulletin, 2015, 60(3):304-319.
doi: 10.1007/s11434-014-0705-8
[14] Chen Q, Liu Z W. Fabrication and applications of solid-state nanopores. Sensors, 2019, 19(8):1886.
doi: 10.3390/s19081886
[15] Luan B Q, Bai J W, Stolovitzky G. Fabricatable nanopore sensors with an atomic thickness. Applied Physics Letters, 2013, 103(18):183501.
doi: 10.1063/1.4826599
[16] 陈剑, 邓涛, 吴次南, 等. 面向新型DNA检测方法的固态纳米孔研究进展. 微纳电子技术, 2013, 50(3):143-150.
Chen J, Deng T, Wu C N, et al. Research progress of solid-state nanopores for the new DNA detection method. Micronanoelectronic Technology, 2013, 50(3):143-150.
[17] Garalde D R, Snell E A, Jachimowicz D, et al. Highly parallel direct RNA sequencing on an array of nanopores. Nature Methods, 2018, 15(3):201-206.
doi: 10.1038/nmeth.4577 pmid: 29334379
[18] Faria N R, Sabino E C, Nunes M R T, et al. Mobile real-time surveillance of Zika virus in Brazil. Genome Medicine, 2016, 8(1):1-4.
doi: 10.1186/s13073-015-0257-9
[19] Stancu M C, van Roosmalen M J, Renkens I, et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nature Communications, 2017, 8:1326.
doi: 10.1038/s41467-017-01343-4
[20] Stoloff D H, Wanunu M. Recent trends in nanopores for biotechnology. Current Opinion in Biotechnology, 2013, 24(4):699-704.
doi: 10.1016/j.copbio.2012.11.008 pmid: 23266100
[21] Wanunu M. Nanopores: a journey towards DNA sequencing. Physics of Life Reviews, 2012, 9(2):125-158.
doi: 10.1016/j.plrev.2012.05.010 pmid: 22658507
[22] Wescoe Z L, Schreiber J, Akeson M. Nanopores discriminate among five C5-cytosine variants in DNA. Journal of the American Chemical Society, 2014, 136(47):16582-16587.
doi: 10.1021/ja508527b
[23] Loose M, Malla S, Stout M. Real-time selective sequencing using nanopore technology. Nature Methods, 2016, 13(9):751-754.
doi: 10.1038/nmeth.3930
[24] Norris A L, Workman R E, Fan Y F, et al. Nanopore sequencing detects structural variants in cancer. Cancer Biology & Therapy, 2016, 17(3):246-253.
[25] Quick J, Loman N J, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature, 2016, 530(7589):228-232.
doi: 10.1038/nature16996
[26] Wang M, Fu A S, Hu B, et al. Nanopore target sequencing for accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. medRxiv, 2020. DOI: 10.1101/2020.03.04.20029538.
doi: 10.1101/2020.03.04.20029538
[27] Chan J F W, Yuan S F, Kok K H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet, 2020, 395(10223):514-523.
doi: 10.1016/S0140-6736(20)30154-9
[28] Prazsák I, Moldován N, Balázs Z, et al. Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus. BMC Genomics, 2018, 19(1):873.
doi: 10.1186/s12864-018-5267-8 pmid: 30514211
[29] Wee Y, Bhyan S B, Liu Y N, et al. The bioinformatics tools for the genome assembly and analysis based on third-generation sequencing. Briefings in Functional Genomics, 2019, 18(1):1-12.
doi: 10.1093/bfgp/ely037
[30] Jain M, Fiddes I T, Miga K H, et al. Improved data analysis for the MinION nanopore sequencer. Nature Methods, 2015, 12(4):351-356.
doi: 10.1038/NMETH.3290
[31] Shabardina V, Kischka T, Manske F, et al. NanoPipe: a web server for nanopore MinION sequencing data analysis. GigaScience, 2019, 8(2): giy169.
[32] Loman N J, Quick J, Simpson J T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature Methods, 2015, 12(8):733-735.
doi: 10.1038/nmeth.3444
[33] Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018, 34(18):3094-3100.
doi: 10.1093/bioinformatics/bty191
[34] Koren S, Walenz B P, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research, 2017, 27(5):722-736.
doi: 10.1101/gr.215087.116
[35] Vaser R, Sović I, Nagarajan N, et al. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Research, 2017, 27(5):737-746.
doi: 10.1101/gr.214270.116
[36] Ferguson J M, Smith M A. SquiggleKit: a toolkit for manipulating nanopore signal data. Bioinformatics, 2019, 35(24):5372-5373.
doi: 10.1093/bioinformatics/btz586 pmid: 31332428
[37] Wick R R, Judd L M, Holt K E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. bioRxiv, 2019, DOI: 10.1101/543439.
doi: 10.1101/543439
[38] Leggett R M, Clark M D. A world of opportunities with nanopore sequencing. Journal of Experimental Botany, 2017, 68(20):5419-5429.
doi: 10.1093/jxb/erx289
[39] Jain M, Koren S, Miga K H, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nature Biotechnology, 2018, 36(4):338-345.
doi: 10.1038/nbt.4060
[40] Wang L T, Qu L, Yang L S, et al. NanoReviser: an error-correction tool for nanopore sequencing based on a deep learning algorithm. Frontiers in Genetics, 2020, 11:900. DOI: 10.3389/fgene.2020.00900.
doi: 10.3389/fgene.2020.00900
[41] David M, Dursi L J, Yao D L, et al. Nanocall: an open source basecaller for Oxford Nanopore sequencing data. Bioinformatics, 2017, 33(1):49-55.
doi: 10.1093/bioinformatics/btw569
[42] Boža V, Brejová B, Vinaǐ T. DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One, 2017, 12(6):e0178751. DOI: 10.1371/journal.pone.0178751.
doi: 10.1371/journal.pone.0178751
[43] Stoiber M, Brown J. BasecRAWller: streaming nanopore basecalling directly from raw signal. bioRxiv, 2017, DOI: 10.1101/133058.
doi: 10.1101/133058
[44] Teng H T, Cao M D, Hall M B, et al. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. GigaScience, 2018, 7(5): giy037.
[45] Rang F J, Kloosterman W P, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biology, 2018, 19(1):90.
doi: 10.1186/s13059-018-1462-9
[46] Goodwin S, McPherson J D, Richard McCombie W. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 2016, 17(6):333-351.
doi: 10.1038/nrg.2016.49 pmid: 27184599
[47] Li Y, Huang C, Ding L Z, et al. Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods, 2019, 166:4-21.
doi: 10.1016/j.ymeth.2019.04.008
[48] Makałowski W, Shabardina V. Bioinformatics of nanopore sequencing. Journal of Human Genetics, 2020, 65(1):61-67.
doi: 10.1038/s10038-019-0659-4 pmid: 31451715
[49] Yue J X, Liti G N. SimuG: a general-purpose genome simulator. Bioinformatics, 2019, 35(21):4442-4444.
doi: 10.1093/bioinformatics/btz424
[50] Lee H, Gurtowski J, Yoo S, et al. Error correction and assembly complexity of single molecule sequencing reads. bioRxiv, 2014. DOI: 10.1101/006395.
doi: 10.1101/006395
[51] Baker E A G, Goodwin S, Richard McCombie W, et al. SiLiCO: a simulator of long read sequencing in PacBio and Oxford nanopore. bioRxiv, 2016. DOI: 10.1101/076901.
doi: 10.1101/076901
[52] Yang C, Chu J, Warren R L, et al. NanoSim: nanopore sequence read simulator based on statistical characterization. GigaScience, 2017, 6(4): gix010.
[53] Li Y, Han R M, Bi C W, et al. DeepSimulator: a deep simulator for nanopore sequencing. Bioinformatics, 2018, 34(17):2899-2908.
doi: 10.1093/bioinformatics/bty223
[54] Li Y, Wang S, Bi C W, et al. DeepSimulator1.5: a more powerful, quicker and lighter simulator for nanopore sequencing. Bioinformatics, 2020, 36(8):2578-2580.
doi: 10.1093/bioinformatics/btz963
[55] Chen W G, Zhang P, Song L F, et al. Simulation of nanopore sequencing signals based on BiGRU. Sensors, 2020, 20(24):7244.
doi: 10.3390/s20247244
[56] Organick L, Ang S D, Chen Y J, et al. Random access in large-scale DNA data storage. Nature Biotechnology, 2018, 36(3):242-248.
doi: 10.1038/nbt.4079 pmid: 29457795
[57] Lopez R, Chen Y J, Ang S D, et al. DNA assembly for nanopore data storage readout. Nature Communications, 2019, 10:2933.
doi: 10.1038/s41467-019-10978-4
[58] Chen W G, Han M Z, Zhou J T, et al. An artificial chromosome for data storage. National Science Review, 2021, 8(5). DOI: 10.1093/nsr/nwab028.
doi: 10.1093/nsr/nwab028
[59] Ceze L, Nivala J, Strauss K. Molecular digital data storage using DNA. Nature Reviews Genetics, 2019, 20(8):456-466.
doi: 10.1038/s41576-019-0125-3
[60] Dong Y M, Sun F J, Ping Z, et al. DNA storage: research landscape and future prospects. National Science Review, 2020, 7(6):1092-1107.
doi: 10.1093/nsr/nwaa007
[61] 丁明珠, 李炳志, 王颖, 等. 合成生物学重要研究方向进展. 合成生物学, 2020, 1(1):7-28.
Ding M Z, Li B Z, Wang Y, et al. Significant research progress in synthetic biology. Synthetic Biology Journal, 2020, 1(1):7-28.
[62] 韩明哲, 陈为刚, 宋理富, 等. DNA信息存储: 生命系统与信息系统的桥梁. 合成生物学, 2021, 2(3):309-322.
Han M Z, Chen W G, Song L F, et al. DNA information storage: bridging biological and digital world. Synthetic Biology Journal, 2021, 2(3):309-322.
[63] 钱珑, 沈玥, 元英进, 等. DNA数字信息存储: 造梦, 追梦与圆梦. 合成生物学, 2021, 2(3):303-304.
Qian L, Shen Y, Yuan Y J, et al. DNA digital information storage: dreaming, chasing and realizing. Synthetic Biology Journal, 2021, 2(3):303-304.
[64] 陈为刚, 葛奇, 王盼盼, 等. 细胞内大片段DNA数据存储的多RS码交织编码. 合成生物学, 2021, 2(3):428-443.
Chen W G, Ge Q, Wang P P, et al. Multiple interleaved RS codes for data storage using up to Mb-scale synthetic DNA in living cells. Synthetic Biology Journal, 2021, 2(3):428-443.
[65] 陈为刚, 黄刚, 李炳志, 等. 音视频文件的DNA信息存储. 中国科学: 生命科学, 2020, 50(1):81-85.
Chen W G, Huang G, Li B Z, et al. DNA information storage for audio and video files. Scientia Sinica (Vitae), 2020, 50(1):81-85.
[66] Varongchayakul N, Song J X, Meller A, et al. Single-molecule protein sensing in a nanopore: a tutorial. Chemical Society Reviews, 2018, 47(23):8512-8524.
doi: 10.1039/c8cs00106e pmid: 30328860
[67] Jain M, Olsen H E, Paten B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biology, 2016, 17(1):1-11.
doi: 10.1186/s13059-015-0866-z
[68] Magi A, Giusti B, Tattini L. Characterization of MinION nanopore data for resequencing analyses. Briefings in Bioinformatics, 2017, 18(6):940-953.
[69] Goodwin S, Gurtowski J, Ethe-Sayers S, et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Research, 2015, 25(11):1750-1756.
doi: 10.1101/gr.191395.115 pmid: 26447147
[70] Smith M, Chan R, Gordon P. Evaluation of simulation models to mimic the distortions introduced into squiggles by nanopore sequencers and segmentation algorithms. PLoS One, 2019, 14(7):e0219495. DOI: 10.1371/journal.pone.0219495.
doi: 10.1371/journal.pone.0219495
[71] Schreiber J, Karplus K. Analysis of nanopore data using hidden Markov models. Bioinformatics, 2015, 31(12):1897-1903.
doi: 10.1093/bioinformatics/btv046 pmid: 25649617
[72] Davey M C, MacKay D J C. Reliable communication over channels with insertions, deletions, and substitutions. IEEE Transactions on Information Theory, 2001, 47(2):687-698.
doi: 10.1109/18.910582
[73] Hawkins J A, Jones S K Jr, Finkelstein I J, et al. Indel-correcting DNA barcodes for high-throughput sequencing. PNAS, 2018, 115(27):E6217-E6226. DOI: 10.1073/pnas.1802640115.
doi: 10.1073/pnas.1802640115
[74] Chen W G, Wang L X, Han M Z, et al. Sequencing barcode construction and identification methods based on block error-correction codes. Science China Life Sciences, 2020, 63(10):1580-1592.
doi: 10.1007/s11427-019-1651-3
[75] Chen W G, Wang P P, Wang L X, et al. Low-complexity and highly robust barcodes for error-rich single molecular sequencing. 3 Biotech, 2021, 11(2):1-11.
doi: 10.1007/s13205-020-02554-1
[76] Mercier H, Bhargava V K, Tarokh V. A survey of error-correcting codes for channels with symbol synchronization errors. IEEE Communications Surveys & Tutorials, 2010, 12(1):87-96.
[77] Liu Y, Chen W G. Iterative decoding for the concatenated code to correct nonbinary insertions/deletions. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). Sydney, NSW, Australia. IEEE, 2017: 1-5.
[78] Liu Y, Chen W G. An iterative decoding scheme for Davey-MacKay construction. China Communications, 2018, 15(6):187-195.
doi: 10.1109/CC.2018.8398515
[79] Liu Y, Chen W G. Hard-decision iterative decoder for the Davey-MacKay construction with symbol-level inner decoder. Electronics Letters, 2016, 52(12):1026-1028.
doi: 10.1049/ell2.v52.12
[80] Liu Y, Chen W G. Decoding on adaptively pruned trellis for correcting synchronization errors. China Communications, 2017, 14(7):1-9.
doi: 10.1109/CC.2017.8246482
[81] 柳元, 陈为刚, 杨晋生. 针对非二进制同步错误的高效水印调制方案. 信号处理, 2017, 33(8):1034-1039.
Liu Y, Chen W G, Yang J S. Efficient watermark modulation schemes for correcting non-binary synchronization errors. Journal of Signal Processing, 2017, 33(8):1034-1039.
[82] 张林林, 陈为刚, 刘敬浩, 等. 纠正同步错误的反转级联水印码的迭代译码. 信号处理, 2017, 33(2):144-151.
Zhang L L, Chen W G, Liu J H, et al. Iterative decoding of the reverse concatenated watermark code for correcting synchronization errors. Journal of Signal Processing, 2017, 33(2):144-151.
[83] 柳元. 插入/删节错误纠错码的研究. 天津: 天津大学, 2017.
Liu Y. Research on insertions/deletions correcting codes. Tianjin: Tianjin University, 2017.
[84] 张译方, 陈为刚. 纠正DPPM中插入删节错误的纠错码方案. 信息技术, 2014, 38(8):29-33.
Zhang Y F, Chen W G. Coding for correcting insertion/deletion errors in differential pulse-position modulation. Information Technology, 2014, 38(8):29-33.
[85] Chen W G, Liu Y. Efficient transmission schemes for correcting insertions/deletions in DPPM. 2016 IEEE International Conference on Communications (ICC). Kuala Lumpur, Malaysia. IEEE, 2016: 1-6.
[86] Chen W G, Wang L X, Han C C. Correcting insertions/deletions in DPPM using hidden Markov model. IEEE Access, 2020, 8:46417-46426.
doi: 10.1109/Access.6287639
[87] Escalona M, Rocha S, Posada D. A comparison of tools for the simulation of genomic next-generation sequencing data. Nature Reviews Genetics, 2016, 17(8):459-469.
doi: 10.1038/nrg.2016.57 pmid: 27320129
[88] Press W H, Hawkins J A, Jones S K, et al. HEDGES error-correcting code for DNA storage corrects indels and allows sequence constraints. PNAS, 2020, 117(31):18489-18496.
[89] Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics, 2016, 32(14):2103-2110.
doi: 10.1093/bioinformatics/btw152
[1] 曹必溥,缪丽华,郭宝颜,贺丽苹. 纳米孔测序技术应用于食品微生物检测的可行性分析[J]. 中国生物工程杂志, 2018, 38(12): 91-98.