Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (3): 75-86    DOI: 10.13523/j.cb.20190310
技术与方法     
构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸
李法彬,刘露,杜燕,班睿()
天津大学化工学院 天津大学系统生物工程教育部重点实验室 天津 300350
Construction of Recombinant Bacillus subtilis as Catalyst for Preparing D- p-Hydroxyphenylglycine
Fa-bin LI,Lu LIU,Yan DU,Rui Ban()
1 School of Chemical Engineering and Technology, Key Laboratory of Systems Biotechnology of Ministry of Education,Tianjin University, Tianjin 300350, China
 全文: PDF(1558 KB)   HTML
摘要:

目的:Bacillus subtilis中表达异源D-海因酶基因(hyd)和D-氨甲酰水解酶基因(adc),构建重组细胞作为催化剂,用于生产D-对羟基苯甘氨酸(D-HPG)。方法: 构建hyd表达质粒,考察培养基中二价金属离子对D-海因酶活性的影响。过表达acoR基因,考察AcoR蛋白胞内水平与PacoA-hyd基因拷贝数的关系。筛选表达adc基因的启动子,构建hydadc基因共表达质粒,考察双酶活性菌株的催化特性。结果: 成功构建了海因酶表达质粒pHPS和pUBS,培养基中添加0.8mmol/L的MnCl2·4H2O,使168N/pUBS菌株的D-海因酶活性达到956U/gDCW。整合表达Pcdd-acoR基因,使LSL02/pUBS菌株的D-海因酶活性达到1 470U/gDCW。单拷贝PAE-adc基因的表达水平相对最高。双酶共表达质粒pUBSC被成功构建,菌株LSL02/pUBSC的最适催化温度为40℃45℃,催化活性能够持续12h,当底物起始浓度为20g/L时,反应12h生成的D-HPG达到14.32g/L,转化率达到95%,收率超过80%。结论: 构建具有D-海因酶和D-氨甲酰水解酶双酶活性的重组Bacillus subtilis作为全细胞催化剂,用于海因酶法生产D-HPG,具有技术上的可行性和优势。

关键词: 枯草芽孢杆菌D-海因酶D-氨甲酰水解酶表达质粒D-对羟基苯甘氨酸    
Abstract:

Objective: To construct the recombinant Bacillus subtilis with D-hydantoinase(DHase, hyd ene) and D-carbamoylase(DCase, adc gene) activity as catalyst to produce D-p-hydroxyphenylglycine(D-HPG) by hydantoinase process. Methods: The hyd gene expression plasmids were constructed. The effects of divalent metal ions in medium on the DHase activity was investigated. The acoR gene was over-expressed to investigate the correlation between the activator protein AcoR and PacoA-hyd gene expression. The optimal promoter used to express adc gene was screened from the PAE, PspoVG, Pcdd and PlytR. The hyd and adc gene co-expression plasmid was constructed and its catalytic properties was characterized. Results: The hyd gene expression plasmid pHPS and pUBS were successfully constructed. Mn 2+ has a strong activation effect on DHase and the activity of the 168N/pUBS reached 956U/gDCW when 0.8mmol/L MnCl2·4H2O was added to the medium. Adding a copy of the Pcdd-acoR gene, DHase activity of the LSL02/pUBS reached 1 470 U/gDCW. The LN04 strain integrated with the PAE-adc had the highest DCase activity. The co-expression plasmid pUBSC was constructed, and under the optimum conditions of pH 8.0 and 40℃, with initial substrate concentration of 20g/L, the catalytic activity of LSL02/pUBSC could last for 12h to generate 14.32g/L of D-HPG with the conversion rate of 95%, yield of 82.4%. Conclusion: The recombinant strain with higher dual enzyme activity can be obtained when heterologous hyd and adc were expressed in Bacillus subtilis and it is technically feasible and has the application prospect for preparing D-HPG by hydantoinase process.

Key words: Bacillus    subtilis    Heterologous    expression    D-hydantoinase    D-carbamoylase    D-p-Hydroxyphenylglycine
收稿日期: 2018-09-20 出版日期: 2019-04-12
ZTFLH:  Q78  
通讯作者: 班睿     E-mail: rbprofessor@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李法彬
刘露
杜燕
班睿

引用本文:

李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.

Fa-bin LI,Lu LIU,Yan DU,Rui Ban. Construction of Recombinant Bacillus subtilis as Catalyst for Preparing D- p-Hydroxyphenylglycine. China Biotechnology, 2019, 39(3): 75-86.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190310        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I3/75

图1  D, L-HPH生成D-HPG的双酶催化反应过程
Strains/plasmids Characteristics Source
Strains
B. subtilis 168 trpC2 Laboratory stock
B. subtilis 168N trpC2, ΔaraR∷Para-neo Laboratory stock
E. coli DH5α Host for shuttle plasmid construction Laboratory stock
B. subtilis BNAY6m trpC2, ΔaraR∷Para-neo, ΔnprE, ΔaprE, ΔyolA-yolB, ΔxynA, Δcsn,ΔyncM, Δpel Laboratory stock
B. subtilis LS10 B. subtilis 168N, ΔacoA∷PacoA-hyd This study
B. subtilis LSL10 B. subtilis LS10, ΔyolAsigL This study
B. subtilis LSL B. subtilis 168N, ΔyolAsigL This study
B. subtilis LSL11 B. subtilis LSL10, ΔsacBacoR This study
B. subtilis LSL12 B. subtilis LSL10, ΔsacB∷Pcdd-acoR This study
B. subtilis LSL13 B. subtilis LSL10, ΔsacB∷PAE-acoR This study
B. subtilis LSL01 B. subtilis LSL, ΔsacBacoR This study
B. subtilis LSL02 B. subtilis LSL, ΔsacB∷Pcdd-acoR This study
B. subtilis LSL03 B. subtilis LSL, ΔsacB∷PAE-acoR This study
B. subtilis LN01 B. subtilis 168N, Δpel∷Pcdd-adc This study
B. subtilis LN02 B. subtilis 168N, Δpel∷PspovG-adc This study
B. subtilis LN03 B. subtilis 168N, Δpel∷PlytR-adc This study
B. subtilis LN04 B. subtilis 168N, Δpel∷PAE-adc This study
pHP13 CmR, EmR in E. coli and B. subtilis Laboratory stock
pUB110 KmR, BlmR in B. subtilis Laboratory stock
pHG-sd1 AmpR,containing the hyd gene(Bacillus stearothermophilus SD-1) Laboratory stock
pHG-cdh AmpR,containing the adc gene(Agrobacterium sp. KNK712) Laboratory stock
pHPS pHP13 derivative, containing the hyd gene,downstream of the promoter PacoA This study
pUBS pUB110 derivative, containing the hyd gene,downstream of the promoter PacoA This study
pUBSC pUB110 derivative, containing the hyd and adc gene,downstream of the promoter PacoA and PAE respectively This study
表1  本研究所用的菌株和质粒
Primer name Primer sequence (5'-3') Size(bp)
ASU1 ATCTCGTTTCGGGAAATTAC 20
ASU2 TCAGTCTTCTCATCTTCACT 20
Sd1 AGTGAAGATGAGAAGACTGA 20
Sd2 GCGACATCCTCACCGATCAACAATCACAATGGAGGACAAT 40
ASD1 TTGATCGGTGAGGATGTCGC 20
ASD2 ATGGGTGCTTTAGTTGAAGATTATCTGGTGTCGGCAAAT 39
CR1/ CR2 TCTTCAACTAAAGCACCCAT/TTATTCATTCAGTTTTCGTG 20/20
ASG1 CACGAAAACTGAATGAATAACACATTGCGGATCTTGATAA 40
ASG2 CCATCTCTTACATTCCTCCTT 21
PHSD1 CCCAAGCTTAACGGCACGATAGACTGTATG 30
PHSD2 CGGGATCCCAATCACAATGGAGGACAATATG 31
PURS1 AAAACTGCAGCAATCACAATGGAGGACAATATG 33
PURS2 AACGGCACGATAGACTGTATG 21
PUB1 CATACAGTCTATCGTGCCGTTAGTGCCGACCAAAACCATAAAAC 44
PUB2 AAAACTGCAGCAGCACAATTCCAAGAAAAACA 32
sacBU1 TCCTCATAGCCAAGAATCC 19
sacBU2 GCAATGTTTCCGATAAAGTCTGGTAGCCGTGATAGTT 37
PacoR1/ PacoR2 GACTTTATCGGAAACATTGC/AATAGGAACGCCGTTATATG 20/20
AP1/AP2 GACAAACATCACGCTCTTG/GTGTAAATTCCTCCCTTACCT 19/21
sacBUAE GATCAGTATATCACAGCGTTCTTGGTAGCCGTGATAGTT 39
sacBPAE1 AGAACGCTGTGATATACTGATC 22
sacBpAE2 CGTTTGGGACCGAGTTCATTCTTTACCCTCTCCTTTT 37
acoR1 ATGAACTCGGTCCCAAACG 19
sacBD1 CATATAACGGCGTTCCTATTTTGATCCTAACGATGTAACC 40
sacBG2 GGAGTCAGTGAACAGGTAC 19
pelU1/ pelU2 CGTTGTTATTCTGGCTTGAT/TGTTCCGCTATCCTATTGC 40
AP1s GCAATAGGATAGCGGAACAGACAAACATCACGCTCTTG 38
AP2s AAGTATCATCTGACGTGTCATGTGTAAATTCCTCCCTTACCT
spoVG1 GCAATAGGATAGCGGAACATGCGGAAGTAAACGAAGTG 38
spoVG2 GTGTACATTTCACCTCCTTTCTATATAAAAGCATTAGTGT 40
peladcA /peladcB ATGACACGTCAGATGATACTT/GCATCGTTTGACTGAATAGC 42
pelD1 TACCAAGGAGGAGTTATAGCGGATCAAGTGACAGCAA 37
pelG2 AGTTAGCACCGTTGGAAG 18
lytRU1/ lytRU2 CTACACTATCACTGACGCTAA/AAATTACTTTCATTATGAG 21/19
AEC1/ AEC2 AGAACGCTGTGATATACTGATC/GCATCGTTTGACTGAATAGC 22/20
PUBR1 CGGGATCCCAGCACAATTCCAAGAAAAACA 30
PUBC2 GATCAGTATATCACAGCGTTCTAGTGCCGACCAAAACCATAAAAC 45
adc1 AGAACGCTGTGATATACTGATC 22
cdh2 CATACAGTCTATCGTGCCGTTCGCTATAACTCCTCCTTGGTA 42
acoA1 AACGGCACGATAGACTGTATG 21
hyd2 CGGGATCCCAATCACAATGGAGGACAATATG 31
表2  本研究所用引物
图2  D-海因酶表达质粒pHPS (a)和pUBS (b)的结构示意图
图3  反应前后反应液的HPLC分析图谱(a)和重组菌株胞内蛋白的SDS-PAGE分析(b)
图4  二价金属离子对D-海因酶活性的影响
Strains(genotype) Ct(ccpA) Ct(acoR) ΔCt ΔΔCt 2-ΔΔCt
LSL(acoR) 27.63 24.14 -3.49
LSL01(2acoR) 28.26 23.69 -4.57 -1.08 2.11
LSL02(acoRc) 27.79 18.31 -9.48 -5.99 63.56
LSL03(acoRa) 28.66 16.93 -11.73 -8.24 302.33
表3  重组菌株acoR基因的qRT-PCR 转录分析
图5  胞内AcoR蛋白水平与不同拷贝数PacoA-hyd基因表达水平的关系
strains(genotype) Ct(ccpA) Ct(adc) ΔCt ΔΔCt 2-ΔΔCt
LN01(Pcdd-adc) 28.41 25.41 -3.00
LN02(PspoVG-adc) 28.42 22.83 -5.59 -2.59 6.02
LN03(PlytR-adc) 27.44 28.42 -1.94 1.06 0.48
LN04(PAE-adc) 29.05 20.13 -8.92 -5.92 60.55
表4  不同启动子表达adc基因的qRT-PCR 转录分析
图6  不同重组菌株D-氨甲酰水解酶活性比较
图7  双酶共表达质粒pUBSC的结构示意图
图8  培养基组分对全细胞催化活性的影响
图9  D-HPG浓度随反应时间变化
图10  40℃不同反应时间反应液液相色谱图
图11  不同D, L-HPH浓度下LSL02/pUBSC全细胞催化反应过程
[1] Nandanwar H S, Prajapati R, Hoondal G S .(D)-p-Hydroxyphenylglycine production by thermostable D-hydantoinase from Brevibacillus parabrevis-PHG1. Biocatalysis and Biotransformation, 2013,31(1):22-32.
doi: 10.3109/10242422.2012.755962
[2] Runser S, Chinski N, Ohleyer E . D-p-Hydroxyphenylglycine production from dl-5-p-hydroxyphenylhydantoin by Agrobacterium sp. Applied Microbiology and Biotechnology, 1990,33(4):382-388.
doi: 10.1007/BF00176651
[3] Clemente-Jiménez JM, Martínez-Rodríguez S, Rodríguez-Vico F , et al. Optically pure alpha-amino acids production by the “Hydantoinase Process”. Recent Patents on Biotechnology, 2008,2(1):35-46.
doi: 10.2174/187220808783330947
[4] Drauz K, Gröger H, May O . Enzyme catalysis in organic synthesis. Russian Chemical Reviews, 2012,50(8):718.
[5] 梅艳珍, 何冰芳, 欧阳平凯 . 海因酶与氨甲酰水解酶产生菌的鉴定及分布. 微生物学通报, 2007,34(6):1104-1108.
doi: 10.3969/j.issn.0253-2654.2007.06.015
Mei Y Z, He B F, Ouyang P K . Identification and distribution of hydantoinase- and carbamoylase-producing bacteria. Microbiology China, 2007,34(6):1104-1108.
doi: 10.3969/j.issn.0253-2654.2007.06.015
[6] Cheon Y H, Park H S, Kim J H , et al. Manipulation of the active site loops of d-hydantoinase, a (β/α)8-barrel protein, for modulation of the substrate specificity. Biochemistry, 2004,43(23):7413-7420.
doi: 10.1021/bi036330o
[7] Cheon Y H, Park H S, Lee S C , et al. Structure-based mutational analysis of the active site residues of d -hydantoinase. Journal of Molecular Catalysis B Enzymatic, 2003,26(3-6):217-222.
doi: 10.1016/j.molcatb.2003.06.005
[8] Cheon Y H, Kim H S, Han K H , et al. Crystal structure of D-hydantoinase from Bacillus stearothermophilus: Insight into the stereochemistry of enantioselectivity. Biochemistry, 2002,41(30):9410-9417.
doi: 10.1021/bi0201567
[9] Lee S G, Lee D C, Kim H S . Purification and characterization of thermostable D-hydantoinase from thermophilic Bacillus stearothermophilus SD-1. Applied Biochemistry and Biotechnology, 1997,62(2):251-266.
doi: 10.1007/BF02788001 pmid: 9170256
[10] Martínez-Rodríguez S , Martínez-Gómez A I, Rodríguez-Vico F . Carbamoylases: Characteristics and applications in biotechnological processes. Applied Microbiology and Biotechnology, 2010,85(3):441-458.
doi: 10.1007/s00253-009-2250-y pmid: 19830420
[11] Nanba H, Ikenaka Y, Yamada Y , et al. Isolation of Agrobacterium sp. strain KNK712 that produces N-carbamyl-D-amino acid amidohydrolase, cloning of the gene for this enzyme, and properties of the enzyme. Bioscience Biotechnology and Biochemistry, 1998,62(5):875-881.
doi: 10.1271/bbb.62.875
[12] Park J H, Kim G J, Kim H S . Production of D-amino acid using whole cells of recombinant Escherichia coli with separately and coexpressed D-hydantoinase and N-carbamoylase. Biotechnology Progress, 2000,16(4):564-570.
doi: 10.1021/bp0000611 pmid: 10933829
[13] Zhang J, Cai Z . Efficient and cost-effective production of D-p-hydroxyphenylglycine by whole-cell bioconversion. Biotechnology and Bioprocess Engineering, 2014,19(1):76-82.
doi: 10.1007/s12257-013-0451-9
[14] Hu X, Lin B . Efficient production of D-HPG with an immobilized transgenic strain LY13-05. Biotechnology and Biotechnological Equipment, 2015,29(5):1-8.
doi: 10.1080/13102818.2014.981368 pmid: 4433828
[15] Jiang S, Li C, Zhang W , et al. Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Biochemical Journal, 2007,402(3):429-437.
doi: 10.1042/BJ20061457
[16] Syldatk C, May O, Altenbuchner J , et al. Microbial hydantoinases-industrial enzymes from the origin of life. Applied Microbiology and Biotechnology, 1999,51(3):293-309.
doi: 10.1007/s002530051395
[17] 王亚盟,, 班睿,, 刘露 , 等. 异源D-海因酶和N-氨甲酰水解酶共表达重组枯草芽孢杆菌的构建. 微生物学报, 2017,57(1):54-65.
doi: 10.13343/j.cnki.wsxb.20160148
Wang Y M, Ban R, Liu L , et al. Construction of recombinant Bacillus subtilis by co-expression of heterologous D-hydantoinase and N-carbamoylase. Acta Microbiologica Sinica, 2017,57(1):54-65.
doi: 10.13343/j.cnki.wsxb.20160148
[18] Shevchuk NA, Bryksin AV, Nusinovich YA , et al. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research, 2004,32(2):e19.
doi: 10.1093/nar/gnh014 pmid: 373371
[19] Spizizen J . Transformation of Biochemically Deficient Strains of Bacillus subtilis by Deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America, 1958,44(10):1072-1078.
doi: 10.1073/pnas.44.10.1072 pmid: 16590310
[20] Liu S, Endo K, Ara K . Introduction of marker-free deletions in Bacillus subtilis using the araR repressor and the ara promoter. Microbiology, 2008,154(9):2562-2570.
doi: 10.1099/mic.0.2008/016881-0 pmid: 18757790
[21] Pfaffl M W . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001,29(9):2002-2007.
[22] Wu S C, Wong S L . Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis. Journal of Biotechnology, 1999,72(3):185-195.
doi: 10.1016/S0168-1656(99)00101-7 pmid: 12680365
[23] Silbersack J, Jürgen B, Hecker M , et al. An acetoin-regulated expression system of Bacillus subtilis. Applied Microbiology and Biotechnology, 2006,73(4):895-903.
doi: 10.1007/s00253-006-0549-5 pmid: 16944132
[24] Kabisch J, Thürmer A, Hübel T , et al. Characterization and optimization of Bacillus subtilis ATCC 6051 as an expression host. Journal of Biotechnology, 2013,163(2):97-104.
doi: 10.1016/j.jbiotec.2012.06.034
[25] Zhu H, Yang S M, Yuan Z M , et al. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis. Microbial Cell Factories, 2015,14(1):1-12.
doi: 10.1186/s12934-014-0183-3 pmid: 4335410
[26] Yang S, Du G, Jian C , et al. Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis. Applied Microbiology and Biotechnology, 2017,101(10):4151-4161.
doi: 10.1007/s00253-017-8142-7 pmid: 28197687
[27] Ali N O, Bignon J, Rapoport G , et al. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. Journal of Bacteriology, 2001,183(8):2497-2504.
doi: 10.1128/JB.183.8.2497-2504.2001 pmid: 11274109
[28] Rappas M, Schumacher J, Beuron F . Structural insights into the activity of enhancer-binding proteins. Science, 2005,307(5717):1972-1975.
doi: 10.1126/science.1105932 pmid: 15790859
[29] Zobel S, Kumpfmüller J, Schweder T , et al. Bacillus subtilis, as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Applied Microbiology and Biotechnology, 2015,99(2):681-691.
doi: 10.1007/s00253-014-6199-0 pmid: 25398283
[30] Buson A, Negro A, Grassato L . Identification, sequencing and mutagenesis of the gene for a D-carbamoylase from Agrobacterium radiobacter. Fems Microbiology Letters, 2010,145(1):55-62.
[31] Nakai T, Hasegawa T, Yamashita E , et al. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure, 2000,8(7):729-737.
doi: 10.1016/S0969-2126(00)00160-X pmid: 10903946
[1] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[2] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[3] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[4] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[5] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[6] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[7] 胡桂元, 杨套伟, 饶志明, 刘梅, 徐美娟, 张显. 增强胞内NDAH水平和乙偶姻还原酶活力提高2,3-丁二醇产量[J]. 中国生物工程杂志, 2016, 36(6): 57-64.
[8] 郝文博, 姬芳玲, 王静云, 张悦, 王天琪, 车文实, 包永明. D194G突变对meso-2,3-丁二醇脱氢酶催化特性的影响[J]. 中国生物工程杂志, 2016, 36(1): 47-54.
[9] 柳慧丽, 李园园, 鞠瑞成, 赵宏涛, 杨清. 拮抗枯草芽孢杆菌KC-5的分离鉴定及其发酵优化[J]. 中国生物工程杂志, 2014, 34(3): 96-102.
[10] 黄翔峰, 詹鹏举, 彭开铭, 刘佳, 陆丽君. 培养基中铁离子对枯草芽孢杆菌CICC 23659发酵产脂肽的影响研究[J]. 中国生物工程杂志, 2013, 33(6): 52-61.
[11] 吴海丽, 张三军, 杜冰, 钱旻, 任华. Bacillus subtilis RecQ酶精氨酸突变体表达纯化及活性检测[J]. 中国生物工程杂志, 2013, 33(12): 29-34.
[12] 刘锦霞, 李娜, 杜文静, 武建荣, 李晶, 丁品, 沈思远, 张建军. 枯草芽孢杆菌高效生防乳剂研究[J]. 中国生物工程杂志, 2011, 31(9): 69-75.
[13] 张洋, 杜姗姗, 谢希贤, 徐庆阳, 陈宁. 过表达purA基因对腺苷积累的影响[J]. 中国生物工程杂志, 2011, 31(12): 22-26.
[14] 李晓静, 段云霞. 代谢工程在核黄素生产上的应用[J]. 中国生物工程杂志, 2011, 31(02): 130-138.
[15] 夏俊刚, 何逵夫, 谢希贤, 徐庆阳, 陈宁. 枯草芽孢杆菌嘌呤核苷磷酸化酶酶学性质研究及在利巴韦林酶法合成中的应用[J]. 中国生物工程杂志, 2010, 30(12): 53-59.