Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (4): 24-31    DOI: 10.13523/j.cb.20190404
研究报告     
家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *
杨隆兵,国果(),马慧玲,李妍,赵欣宇,苏佩佩,张勇
贵州医科大学基础医学院 贵州医科大学环境污染与疾病监控教育部重点实验室 贵阳 550025
Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica
Long-bing YANG,Guo GUO(),Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG
School of Basic Medical Sciences, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education,Guizhou Medical University,Guiyang 550025, China
 全文: PDF(1123 KB)   HTML
摘要:

目的:优化AMPs17重组蛋白的原核表达条件,分析重组蛋白的抗真菌活性。方法:比较不同的诱导温度(25℃、28℃、 30℃、32℃、34℃)、异丙基硫代-β-D半乳糖苷(IPTG)诱导浓度(0.025mmol/L、 0.05mmol/L、0.1mmol/L、0.3mmol/L、0.5mmol/L、0.8mmol/L、1.0mmol/L)和诱导时间(12h、15h、18h、21h、24h)对AMPs17重组蛋白表达量的影响,筛选AMPs17重组蛋白的最佳表达条件;采用镍离子金属螯合剂亲和层析柱对重组蛋白进行纯化,SDS-PAGE和ImageJ图像分析系统对表达结果进行分析,Western blot对AMPs17重组蛋白进行鉴定,高效液相色谱分析重组蛋白的纯度,微量液体稀释法及菌落计数法检测其抗真菌活性。结果:在诱导温度为32℃、IPTG浓度为0.05mmol/L的条件下诱导培养15h,AMPs17重组蛋白的表达量最高且最为稳定;HPLC色谱仪分析显示AMPs17重组蛋白纯度可达到90%以上;优化后的AMPs17重组蛋白能有效抑制白色念珠菌的生长。结论:优化了家蝇抗菌肽AMPs17的诱导表达条件,获得了高表达、稳定且具有抗真菌活性的蛋白质,为后续抗菌机制及应用研究提供一定的实验基础。

关键词: 家蝇家蝇抗菌肽-17原核表达条件优化抗真菌活性    
Abstract:

Objective: To optimize the prokaryotic expression conditions of AMPs17 recombinant protein and analyze the antifungal activity of recombinant protein. Methods: Compare different induction temperatures (25℃, 28℃, 30℃, 32℃, 34℃), isopropylthio-β-D galactoside (IPTG) induced concentration (0.025mmol/L, 0.05mmol/L, 0.1mmol/L, 0.3mmol/L, 0.5mmol/L, 0.8mmol/L, 1.0mmol/L) and induction time (12h, 15h, 18h, 21h, 24h) on the expression of AMPs17 recombinant protein, screening the optimal expression conditions of AMPs17 recombinant protein. The recombinant protein was purified by nickel ion metal chelator affinity chromatography column, and the expression results were analyzed by SDS-PAGE electrophoresis and ImageJ image analysis system. The recombinant protein of AMPs17 was identified by Western blot and the purity of the recombinant protein was analyzed by high performance liquid chromatography(HPLC). The antifungal activity was detected by a micro liquid dilution method and a colony counting method. Results: The results showed that the expression of AMPs17 recombinant protein was the highest and the most stable when induced at 32℃ and IPTG concentration of 0.05mmol/L for 15h. The HPLC analysis showed that the purity of AMPs17 recombinant protein reached 90%. In addition, AMPs17 recombinant protein can effectively inhibit the growth of Candida albicans. Conclusion: The induction and expression conditions of antibacterial peptide AMPs17 were optimized, and proteins with high expression, stability and antifungal activity were obtained, which provided certain experimental basis for the follow-up antibacterial mechanism and application research.

Key words: Musca domestica    AMPs17    Prokaryotic expression    Condition optimization    Antifungalactivity
收稿日期: 2018-09-30 出版日期: 2019-05-08
ZTFLH:  Q819  
基金资助: * 国家自然科学基金资助项目(81760647);国家自然科学基金资助项目(81560337)
通讯作者: 国果     E-mail: guoguojsc@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨隆兵
国果
马慧玲
李妍
赵欣宇
苏佩佩
张勇

引用本文:

杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.

Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica. China Biotechnology, 2019, 39(4): 24-31.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190404        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I4/24

图1  AMPs17基因cDNA片段的产物
图2  重组质粒pET-28a(+)- AMPs17双酶切鉴定图
图3  不同诱导温度对AMPs17蛋白表达量的SDS-PAGE分析
图4  不同诱导时间对AMPs17蛋白表达量的SDS-PAGE分析
图5  不同诱导IPTG浓度对AMPs17蛋白表达量的SDS-PAGE分析
图6  AMPs17蛋白的诱导表达及纯化
图7  AMPs17重组蛋白His标签鉴定图
图8  AMPs17蛋白的纯度测定
菌株 MIC(μg/ml) MBC(μg/ml)
AMPs17 FLC AMPs17 FLC
C. albicans
ATCC10231
20 3.125 40 6.25
表1  AMPs17蛋白的抗真菌活性检测
图9  AMPs17蛋白的抗白色念珠菌活性
[1] Martens E, Demain A L . The antibiotic resistance crisis, with a focus on the United States. Journal of Antibiotics, 2017,70(5):520-526.
doi: 10.1038/ja.2017.30 pmid: 28246379
[2] Bernard E, Kreis B, Lotte A , et al. Tuberculosis in pregnancy. Clinics in Perinatology, 2016,4(2):880.
[3] 李秀云 . 盐酸氨溴索与氟康唑联合对抗耐药白色念珠菌的作用及机制研究. 济南:山东大学, 2017.
Li X Y . The effect and mechanism of ambroxol hydrochloride combined with fluconazole against Candida albicans. Jinan: Shandong University, 2017.
[4] Yeaman M R, Büttner S, Thevissen K . Regulated cell death as a therapeutic target for novel antifungal peptides and biologics. [2018-06-28]. https://www.ncbi.nlm.nih.gov/pubmed/29854086/
[5] Wang G, Li X, Wang Z . APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 2015,44(D1):1087-1093.
doi: 10.1093/nar/gkv1278 pmid: 4702905
[6] Kounatidis I, Ligoxygakis P . Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biology, 2012,2(5):120075.
doi: 10.1098/rsob.120075 pmid: 3376734
[7] Panteleev P V, Balandin S V, Ivanov V T , et al. A therapeutic potential of animal I 2-hairpin antimicrobial peptides . Current Medicinal Chemistry, 2017,24(17):1724-1746.
[8] Park J, Kang H K, Choi M C , et al. Antibacterial activity and mechanism of action of analogues derived from the antimicrobial peptide mBjAMP1 isolated from Branchiostoma japonicum. Journal of Antimicrobial Chemotherapy, 2018,73(8):2059.
doi: 10.1093/jac/dky144 pmid: 29718248
[9] Lyu Y, Yang Y, Lyu X , et al. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Scientific Reports, 2016,6(2):27258.
doi: 10.1038/srep27258 pmid: 4890124
[10] Zhou J, Kong L, Fang N , et al. Synthesis and functional characterization of MAF-1A peptide derived from the larvae of housefly, Musca domestica (Diptera: Muscidae). Journal of Medical Entomology, 2016,53(6):1467-1472.
doi: 10.1093/jme/tjw110 pmid: 27838615
[11] Velden W J V D, Iersel T M V, Blijlevens N M , et al. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Medicine, 2009,7(1):44.
doi: 10.1186/1741-7015-7-44
[12] Mehta S, Singh C, Plata K B , et al. Beta-lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivativ. Antimicrobial Agents and Chemotherapy. 2012,56(12):6192-6200.
[13] Craik D J, Fairlie D P, Liras S , et al. The future of peptide-based drugs. Chemical Biology and Drug Design, 2013,81(1) : 136-147.
doi: 10.1111/cbdd.2012.81.issue-1
[14] Matejuk A, Begum Q, Woodle M C . Peptide-based antifungal therapies against emerging infections. Drugs Future, 2010,35(3):197-231.
doi: 10.1358/dof.2010.035.03.1452077 pmid: 20495663
[15] Scott J G, Liu N, Kristensen M , et al. A case for sequencing the genomeof Musca domestica (Diptera: Muscidae). Journal of Medical Entomology, 2009,46(2):175-182.
doi: 10.1603/033.046.0202
[16] Ai H, Wang F, Zhang N , et al. Antiviral, immunomodulatory,and freeradical scavenging activities of a protein-enriched fraction from the larvae of the housefly,Musca domestica. Journal of Insect Science, 2013,13(112):112
[17] 陶如玉, 李妍, 马慧玲 , 等. 家蝇AMP17基因的克隆及其分子特性和表达模式研究. 中国病原生物学杂志, 2017,12(11):1079-1083.
Tao R Y, Li Y, Ma H L , et al. Cloning and molecular characteristics and expression patterns of AMP17 gene in Musca domestica. Chinese Journal of Pathogenic Biology, 2017,12(11):1079-1083.
[18] 王中原 . 可溶性人SUMO融合表达系统的研究. 长春:吉林大学, 2010.
Wang Z Y . Study on soluble human SUMO fusion expression system. Changchun:Jilin University, 2010.
[19] Nuc P, Nuc K . Recombinant protein production in Escherichia coli. Postepy Biochem, 2006,52(4):448-456.
[20] Gao Q, Zhao J M, Song L S , et al. Molecular cloning, characterization and expression ofheat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradiants. Fish & Shellfish Immunology, 2008,24(4):379-385.
doi: 10.1016/j.fsi.2007.08.008 pmid: 18282767
[21] Liang R, Liu X, Liu J , et al. A T7-expression system under temperature control could create temperature-sensitive phenotype of target gene in Escherichia coli. Journal of Microbiological Methods, 2007,68(3):497-506.
doi: 10.1016/j.mimet.2006.10.016 pmid: 17169451
[22] 解庭波 . 大肠杆菌表达系统的研究进展. 长江大学学报(自科版), 2008,5(3):77-82.
doi: 10.3969/j.issn.1673-1409-B.2008.03.034
Xie T B . Research progress of E. coli expression system. Journal of Yangtze University(Self version), 2008,5(3):77-82.
doi: 10.3969/j.issn.1673-1409-B.2008.03.034
[23] 彭传林 . 家蝇抗真菌肽MAF-1原核表达体系优化与活性分析. 贵阳:贵阳医学院, 2015.
Peng C L . Optimization and activity analysis of prokaryotic expression system of Musca domestica antifungal peptide MAF-1. Guiyang: Guiyang Medical College, 2015.
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[3] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[4] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[5] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[6] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[7] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[8] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[9] 李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.
[10] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[11] 何亚南,孙钰椋,任雅坤,梁盛英,杨芬,刘彦礼,林俊堂. 金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *[J]. 中国生物工程杂志, 2018, 38(12): 14-20.
[12] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[13] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.
[14] 张旭辉, 张红楠, 李勇, 汪文强. 抑制西瓜蔓枯病菌的生防真菌筛选、鉴定及发酵条件优化[J]. 中国生物工程杂志, 2017, 37(5): 76-86.
[15] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.