Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (3): 38-47    DOI: 10.13523/j.cb.1907053
研究报告     
基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *
姜吉喆1,**,潘航2,**,乐敏2,***(),章乐1,***()
1 四川大学计算机(软件)学院 成都 610065
2 浙江大学动物科学学院动物预防医学研究所 浙江省动物预防医学重点实验室 杭州 310058
The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches
JIANG Ji-zhe1,**,PAN Hang2,**,YUE Min2,***(),ZHANG Le1,***()
1 School of Computer Science (Software), Sichuan University, Chengdu 610065, China
2 Institute of Animal Preventive Medicine, College of Animal Science, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2161 KB)   HTML
摘要:

犬布鲁氏菌病是一种世界范围内导致家畜流产和人波状热的人畜共患病, 最近随着相关宿主动物如犬类饲养数量的增多,家庭儿童的感染案例报道屡见不鲜,所以研究犬布鲁氏菌具有重要公共卫生意义.使用了全球的91个菌株,利用贝叶斯方法对菌株分群,基于core-SNPs和分子钟模型构建进化树进行种群结构和时空分布分析,使用COG功能聚类进行功能差异研究.发现的4个系统发育群(PG)与它们的地理来源显著相关,PG1~3中,存在亚洲到非洲及欧美间的传播;PG4定殖于北美,且耐药基因逐渐缺失.功能基因在4个PG中的存在/缺失谱不同,PG3功能最完整,其他PG各具独特的功能基因缺失,特别是PG2大多缺失ABC型转运系统组分.掌握犬布鲁氏菌在全球的分布和传播,理解其基因组变异有助于开发新的诊断和疫苗靶点,以对抗由犬布鲁氏菌引起的人类流行病.

关键词: 犬布鲁氏菌SNP比较基因组学系统发育群(PG)分支长度优化算法    
Abstract:

Canine brucellosis is a zoonotic disease that causes livestock abortion and human Malta fever worldwide. Recently, with the increase in the number of related host animals such as dogs, infection reports of family children are not uncommon, so study Brucella canis has important public health implications. Using 91 strains around the world, Bayesian method was used to cluster the strains, and based on the core-SNPs and molecular clock model, the evolutionary tree was constructed for population structure and spatiotemporal distribution analysis, and COG function clustering was used to study the functional differences. The four phylogenetic groups (PG) found were significantly associated with their geographic origin. Among PG1-3, there was transmission from Asia to Africa, Europe and America. PG4 was colonized in North America, and its drug resistance genes were gradually missing. Functional gene has different presence/absence profiles in 4 PGs, PG3 is the most complete, and other PGs have unique functional gene absence, especially PG2 mostly lacks ABC-type transport system components. Understanding the global distribution and spread of Brucella canis and its genomic variation will help develop new diagnostic and vaccine targets to combat the epidemic caused by Brucella canis.

Key words: Brucella canis    SNP    Comparative genomics    PG    Branch length optimization algorithm
收稿日期: 2019-07-30 出版日期: 2020-04-18
ZTFLH:  TP3-05  
基金资助: * 国家自然科学基金(6137213);科技部重大专项(2018ZX10201002)
通讯作者: 乐敏,章乐     E-mail: myue@zju.edu.cn;zhangle06@scu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姜吉喆
潘航
乐敏
章乐

引用本文:

姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.

JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches. China Biotechnology, 2020, 40(3): 38-47.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1907053        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I3/38

图1  core-SNPs进化树构建流程
图2  分支拓扑关系
图3  基于core-SNPs的进化树
位置 欧洲 东亚 拉美 非洲 北美 总计
(n)
PG1 1 9 1 11
PG2 3 5 1 1 10
PG3 25 2 27
PG4 43 43
表1  PG中不同位置对应的菌株数量
图4  有关时空分布的最大似然进化树
图5  4个PG中的功能缺失
[1] Hollett R B . Canine brucellosis: Outbreaks and compliance. Theriogenology, 2006,66(3):575-587.
[2] Lucero N E, Jacob N O, Ayala S M , et al. Unusual clinical presentation of brucellosis caused by Brucella canis. Journal of Medical Microbiology, 2005,54(5):505-508.
[3] Carmichael L E . Abortions in 200 beagles. J Am Vet Med Assoc, 1966,149:1126.
[4] Wanke M M . Canine brucellosis.Animal Reproduction Science, 2004, 82-83:195-207.
[5] Young E J . Human Brucellosis. Clinical Infectious Diseases, 1983,5(5):821-842.
[6] Lucero N E, Escobar G I, Ayala S M , et al. Diagnosis of human brucellosis caused by Brucella canis. Journal of Medical Microbiology, 2005,54(5):457-461.
[7] 齐海霞, 张海云, 张宛婧 , 等. 宠物犬布鲁氏菌病的现状与防控. 中国畜牧兽医文摘, 2013,29(8):110-111.
Qi H X, Zhang H Y, Zhang W J , et al. Status and prevention of brucellosis in pet dogs. Chinese Abstract of Veterinary Science, 2013,29(8):110-111.
[8] 曹雪峰, 田一男, 于爽 , 等. 犬布鲁菌病的流行病学,诊断与防控研究进展. 中国兽医学报, 2015,35(8):1392-1396.
Cao X F, Tian Y N, Yu S , et al. Advances in epidemiology, diagnosis and prevention of canine brucellosis. Chinese Journal of Veterinary Science, 2015,35(8):1392-1396.
[9] 李娟 . 犬布鲁氏杆菌病的防治. 湖北畜牧兽医, 2017,38(9):14-15.
Li J . Prevention and treatment of canine brucellosis. Hubei Journal of Animal and Veterinary Sciences, 2017,38(9):14-15.
[10] Ferreira Vicente A, Girault G, Corde Y , et al. New insights into phylogeography of worldwide Brucella canis isolates by comparative genomics-based approaches: focus on Brazil. BMC Genomics, 2018,19(1):636.
[11] Whatmore A M, Koylass M S, Muchowski J , et al. Extended multilocus sequence analysis to describe the global population structure of the genus Brucella: phylogeography and relationship to biovars. Frontiers in Microbiology, 2016,7:2049.
[12] Scholz H, Vergnaud G . Molecular characterisation of Brucella species. Rev Sci Tech, 2013,32(1):149-162.
[13] Sankarasubramanian J, Vishnu U S, Gunasekaran P , et al. A genome-wide SNP-based phylogenetic analysis distinguishes different biovars of Brucella suis. Infection, Genetics and Evolution, 2016,41:213-217.
[14] Tan K K, Tan Y C, Chang L Y , et al. Full genome SNP-based phylogenetic analysis reveals the origin and global spread of Brucella melitensis. BMC Genomics, 2015,16(1):93.
[15] Foster J T , Beckstrom-Sternberg S M, Pearson T, et al.Whole-genome-based phylogeny and divergence of the genus Brucella. Journal of Bacteriology, 2009,191(8):2864-2870.
[16] Foster J T, Price L B ,Beckstrom-Sternberg S M, et al. Genotyping of Brucella species using clade specific SNPs. BMC Microbiology, 2012,12(1):110.
[17] Nagasaki H, Ebana K, Shibaya T , et al. Core single-nucleotide polymorphisms-a tool for genetic analysis of the Japanese rice population. Breeding science, 2010,60(5):648-655.
[18] Arndt D, Grant J R, Marcu A , et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Research, 2016,44(W1):W16-W21.
[19] Zhou Y, Liang Y, Lynch K H , et al. PHAST: a fast phage search tool. Nucleic Acids Research, 2011,39(suppl_2):W347-W352.
[20] Corander J, Marttinen P . Bayesian identification of admixture events using multilocus molecular markers. Molecular ecology, 2006,15(10):2833-2843.
[21] Corander J, Marttinen P, Sirén J , et al. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC bioinformatics, 2008,9(1):539.
[22] Tang J, Hanage W P, Fraser C , et al. Identifying currents in the gene pool for bacterial populations using an integrative approach. PLoS Computational Biology, 2009,5(8):e1000455.
[23] Erik G ,Gabor M. Haplotype-based variant detection from short-read sequencing. [2012-07-24]. .
[24] Kalyaanamoorthy S, Minh B Q, Wong T K , et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 2017,14(6):587.
[25] Nguyen L T ,Schmidt H A, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 2014,32(1):268-274.
[26] Guindon S, Gascuel O . A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 2003,52(5):696-704.
[27] Tatusov R L, Fedorova N D, Jackson J D , et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 2003,4(1):41.
[28] Altschul S F, Gish W, Miller W , et al. Basic local alignment search tool. Journal of Molecular Biology, 1990,215(3):403-410.
[29] Camacho C, Coulouris G, Avagyan V , et al. BLAST+: architecture and applications. BMC Bioinformatics, 2009,10(1):421.
[30] Sankarasubramanian J, Vishnu U S, Gunasekaran P , et al. Identification of genetic variants of Brucella spp. through genome-wide association studies. Infection, Genetics and Evolution, 2017,56:92-98.
[31] Connor T R, Barker C R, Baker K S , et al. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. Elife, 2015,4:e07335.
[32] Zhang L, Liu G, Kong M , et al. Revealing dynamic regulations and the related key proteins of myeloma-initiating cells by integrating experimental data into a systems biological model. [2019-07-26]..
[33] 章乐, 李鹏超, 赵竟天 , 等. 基因组三维结构研究进展.[2020-02-06]. .
Zhang L, Li P C, Zhao J T , et al. Research progress on the three-dimensional structure of genome.[ 2020-02-06]. .
[34] Zhang L, Li J, Yin K , et al. Computed tomography angiography-based analysis of high-risk intracerebral haemorrhage patients by employing a mathematical model. BMC Bioinformatics, 2019,20(Suppl 7):193.
[35] Zhang L, Dai Z, Yu J , et al. CpG-island-based annotation and analysis of human house-keeping genes. [2020-01-25]..
[36] Zhang L, Bai W, Yuan N , et al. Comprehensively benchmarking applications for detecting copy number variation. PLoS Comput Biol, 2019,15(5):e1007069.
[37] Xiao M, Yang X, Yu J , et al. CGIDLA: developing the web server for CpG island related density and LAUPs (lineage-associated underrepresented permutations) Study. [2019-08-20]..
[38] Li J, Fu A, Zhang L . An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip Sci, 2019,11(2):320-328.
[39] Zhang L, Xiao M, Zhou J , et al. Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based on a Jellyfish-based LAUPs analysis application (JBLA). Bioinformatics, 2018,34(21):3624-3630.
[40] Zhang L, Zheng C Q, Li T , et al. Building up a robust risk mathematical platform to predict colorectal cancer. [2017-10-16].
[41] Zhang L, Zhang S . Using game theory to investigate the epigenetic control mechanisms of embryo development: comment on: "Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition" by Qian Wang et al. Phys Life Rev, 2017,20:140-142.
[42] Zhang L, Liu Y, Wang M , et al. EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. J Mol Cell Biol, 2017,9(6):477-488.
[43] Xia Y, Yang C, Hu N , et al. Exploring the key genes and signaling transduction pathways related to the survival time of glioblastoma multiforme patients by a novel survival analysis model. BMC Genomics, 2017,18(Suppl 1):950.
[44] Zhang L, Qiao M, Gao H , et al. Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation. Nanoscale, 2016,8(31):14877-14887.
[1] 葛林, 刘新宇, WANG Guirong. 人SP-B蛋白转基因小鼠及细菌性肺炎模型的构建[J]. 中国生物工程杂志, 2017, 37(10): 65-71.
[2] 陈臣, 任婧, 周方方, 刘振民, 郭本恒. 植物乳杆菌的比较基因组学研究[J]. 中国生物工程杂志, 2013, 33(12): 35-44.
[3] 刘肖帅, 葛鲁娜, 韩金祥, 常晓天, 朱有名, 王世立. 肽基精氨酸脱亚胺酶4(PADI4)对RA的影响[J]. 中国生物工程杂志, 2011, 31(9): 103-108.
[4] 惠有为, 夏天, 赵亚玲, 贾静芳. HaSNPV几丁质酶的分离纯化与毒理学研究[J]. 中国生物工程杂志, 2011, 31(02): 43-49.
[5] 惠有为 赵健 王振虎 夏天. HaSNPV几丁质酶重组蛋白的表达、纯化和复性[J]. 中国生物工程杂志, 2010, 30(02): 77-82.
[6] 贺超英, 陈受宜. 基因组学方法在植物抗逆性研究中的应用[J]. 中国生物工程杂志, 2001, 21(1): 29-32.
[7] 毕高峰, 朱立煌. 单细胞自由生物基因组全序列的测定和比较基因组研究[J]. 中国生物工程杂志, 1997, 17(5): 30-35.