Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (3): 56-64    DOI: 10.13523/j.cb.20190308
技术与方法     
L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *
王越,李江华,堵国成,刘龙()
江南大学生物工程学院 无锡 214122
Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis
Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU()
Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education Jiangnan University, Wuxi 214122, China
 全文: PDF(1673 KB)   HTML
摘要:

α-酮戊二酸(α-ketoglutaric acid,α-KG)是谷氨酸脱氨基的酮酸产物,作为一种重要的有机酸广泛用于食品、医药、精细化工等领域。为提高L-氨基酸脱氨酶全细胞催化法合成α-KG的效率及产量,首先通过优化全细胞催化剂制备条件及全细胞转化反应条件,包括发酵过程中的温度、诱导剂浓度、诱导剂添加时刻、诱导时间等;全细胞转化过程中的温度、pH、细胞量、转化时间。各个条件优化后以200g/L谷氨酸钠为底物时,产量最终提高了54.9%,摩尔转化率为39.6%。其次,通过定点饱和突变对L-氨基酸脱氨酶进行定向进化以提高其催化能力。经过多次突变、筛选,最优突变体E.coli BL21-pET-20b(+)-pm1152催化200g/L谷氨酸钠生成α-KG最高产量为100.9g/L,摩尔转化率为64.7%,较最初对照菌株提高了66.3%。结果表明,条件优化和饱和突变可有效提高重组大肠杆菌全细胞转化合成α-KG的能力。

关键词: L-氨基酸脱氨酶条件优化定点饱和突变全细胞催化    
Abstract:

Alpha-ketoglutaric acid (α-KG), which is a keto acid product deaminated by glutamic acid, is widely used in food, medicine, fine chemicals and other fields as an important organic acid. To improve the yeild and the efficiency of biotransformation for the synthesis of α-ketoglutaric acid. First, by optimizing the conditions of whole-cell biocatalyst preparation and whole-cell biocatalysis conditions. Optimization conditions include the temperature, pH, inducer concentration, induction time in the whole-cell biocatalyst preparation process and the temperature, pH, biocatalyst concentration, biocatalytic time in the whole-cell biocatalysis process. Determine the optimal conditions of each item by detecting the amount of product α-KG. After the conditions were optimized, the maximum yield was increased by 54.9 % and the molar conversion was 39.6 %. Secondly, the directed evolution of L-amino acid deaminase by site-directed mutagenesis increased its catalytic ability. Through multiple mutations, screening, the yield of α-ketoglutaric acid biocatalytic synthesized by monosodium glutamate with optimal mutant E.coli BL21-pET-20b (+)-pm1152 was 100.9 g/L, and the molar conversion rate was 64.7 %, an increase of 66.3% compared to the control strain. The maximal yield and molar conversion of L-glutamic acid to α-KG was reached under the following optimal conditions: 20 g/L whole-cell biocatalyst, 30 ℃, pH 6.0, and 60-h biocatalysis, strain: E.coli BL21-pET-20b (+)-pm1152. The results showed that the conditional optimization and saturation mutation could effectively increase the whole-cell biocatalyst of recombinant E. coli to synthesize α-ketoglutaric acid.

Key words: L-amino    acid    deaminase    Condition    optimization    Site-saturation    mutagenesis    Whole-cell    biocatalyst
收稿日期: 2018-09-06 出版日期: 2019-04-12
ZTFLH:  Q819  
基金资助: * 国家自然科学基金优秀青年基金(31622001);江苏省重点研发计划-社会发展资助项目(BE2016638)
通讯作者: 刘龙     E-mail: longliu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王越
李江华
堵国成
刘龙

引用本文:

王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.

Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis. China Biotechnology, 2019, 39(3): 56-64.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190308        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I3/56

引物名称 碱基序列(5'-3')
I100-F NNNATTAGTTACCAAACATCACCAGAAATCTTCCC
I100-R TTGGCTGTATGCACGGCCTGATTG
G206-F NNNACACCTGCACTCGCTCGTTATG
G206-R TGTTTCAGGATCAACAGAGCCTGAAT
G235-F NNNAAAATCTCTGATGTGGTGAGTGAG
G235-R ACCCGCAGTTTCAATACCTCTTAC
P272-F NNNACGCTCAATGTATATCTATCACAACAACGT
P272-R GATATCAATACCCATATTGCCCATAAATAAACGTGAC
V276-F NNNTATCTATCACAACAACGTGTCTCAGGG
V276-R ATTGAGCGTTGGGATATCAATACCCATATTGC
L278-F NNNTCACAACAACGTGTCTCAGGG
L278-R ATATACATTGAGCGTTGGGATATCAATACCC
V283-F NNNTCAGGGGTTCCTGGTGCACCAC
V283-R ACGTTGTTGTGATAGATATACATTGAGCGTTG
E340-F NNNTTACCGTTGGAATTCTCTATTGGTG
E340-R TCCGCCACCTAATAAGTGCATAAATTTAGG
L363-F NNNGATGAAAAAACACCATTCGAACAATTCCG
L363-R ATTCCAAGAGGTCGGCATTTTAAATG
N416-F NNNGAATTACCTATCATTTCTGAGGTCAAAGAATAC
N416-R AAATGTTGGACTCACAACGGCACCCCAAC
表1  定点饱和突变引物
图1  诱导温度优化
图2  诱导剂添加时刻优化及培养结束时菌体OD600值
图3  诱导时间优化
图4  IPTG浓度优化及培养结束时菌体OD600值
图5  种龄对催化合成α-酮戊二酸的影响
图6  温度对催化合成α-酮戊二酸的影响
图7  pH对催化合成α-酮戊二酸的影响
图8  转化时间对催化合成α-酮戊二酸的影响
图9  细胞量对催化合成α-酮戊二酸的影响
图10  L-氨基酸脱氨酶与L-谷氨酸对接结果
图11  定点突变正向结果突变体
图12  复合突变正向结果
图13  突变后催化条件对α-酮戊二酸的影响
[1] Matzi V, Lindenmann J, Muench A , et al. The impact of preoperative micronutrient supplementation in lung surgery. A prospective randomized trial of oral supplementation of combined alpha-ketoglutaric acid and 5-hydroxymethylfurfural. European Journal of Cardio-thoracic Surgery, 2007,32(5):776-782.
doi: 10.1016/j.ejcts.2007.07.016 pmid: 17768058
[2] Sauer M, Porro D, Mattanovich D , et al. Microbial production of organic acids: Expanding the markets. Trends in Biotechnology, 2008,26(2):100-108.
doi: 10.1016/j.tibtech.2007.11.006 pmid: 18191255
[3] Jinap S, Hajeb P . Glutamate. its applications in food and contribution to health. Appetite, 2010,55(1):1-10.
doi: 10.1016/j.appet.2010.05.002 pmid: 20470841
[4] Stottmeister U, Aurich A, Wilde H , et al. White biotechnology for green chemistry: Fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. Journal of Industrial Microbiology Biotechnology, 2005,32(11-12):651-664.
doi: 10.1007/s10295-005-0254-x
[5] 牛盼清, 张震宇, 刘立明 . 酶法转化L-谷氨酸生产α-酮戊二酸. 生物工程学报, 2014,30(8):1318-1322.
Niu P Q, Zhang Z Y, Liu L M . Enzymatic production of α-ketoglutaric acid by L-glutamate oxidase from L-glutamic acid. Chinese Journal of Biotechnology, 2014,30(8):1318-1322.
[6] Liu L, Hossain G S, Shin H D , et al. One-step production of alpha-ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis. Journal of Biotechnology, 2013,164(1):97-104.
doi: 10.1016/j.jbiotec.2013.01.005 pmid: 23333917
[7] Hossain G S, Li J H, Shin H D , et al. Improved production of alpha-ketoglutaric acid (alpha-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of L-amino acid deaminase and deletion of the alpha-KG utilization pathway. Journal of Biotechnology, 2014,187:71-77.
doi: 10.1016/j.jbiotec.2014.07.431
[8] Hou Y, Hossain G S, Li J H , et al. Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis: Comparison of enzymatic and whole-cell biotransformation approaches. Applied Microbiology and Biotechnology, 2015,99(20):8391-8402.
doi: 10.1007/s00253-015-6757-0
[9] Li R X, Sakir H G, Li J H , et al. Rational molecular engineering ofl-amino acid deaminase for production of α-ketoisovaleric acid froml-valine by Escherichia coli. Rsc Advances, 2017,7(11):6615-6621.
doi: 10.1039/C6RA26972A
[10] Song Y, Li J H, Shin H D , et al. One-step biosynthesis of alpha-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Scientific Reports, 2015,5:12614.
doi: 10.1038/srep12614
[11] Carvalho de, CarlaC C R . Enzymatic and whole cell catalysis: Finding new strategies for old processes. Biotechnology Advances, 2011,29(1):75-83.
doi: 10.1016/j.biotechadv.2010.09.001 pmid: 20837129
[12] Baek J O, Seo J W, Kwon O , et al. Expression and characterization of a second L-amino acid deaminase isolated from Proteus mirabilis in Escherichia coli. Journal of Basic Microbiology, 2011,51(2):129-135.
doi: 10.1002/jobm.201000086 pmid: 21298676
[13] Faust A, Niefind K, Hummel W . The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. Journal of Molecular Biology, 2007,367(1):234-248.
doi: 10.1016/j.jmb.2006.11.071 pmid: 17234209409300143002282013
[14] Pelmont J, Arlaud G, Rossat A M . L-aminoacide oxydases des enveloppes de Proteus mirabilis: Propriétés générales. Biochimie, 1972,54(10):1359-1374.
doi: 10.1016/S0300-9084(72)80076-2
[15] Hossain G S, Li J H, Shin H D , et al. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing L-amino acid deaminase from Proteus mirabilis. Journal of Biotechnology, 2014,169(Complete):112-120.
doi: 10.1016/j.jbiotec.2013.10.026 pmid: 24172254
[16] Motta P, Molla G, Pollegioni L , et al. Structure-function relationships in L-amino acid deaminase, a flavoprotein belonging to a novel class of biotechnologically relevant enzymes. Journal of Biological Chemistry, 2016,291(20):10457-10475.
doi: 10.1074/jbc.M115.703819 pmid: 27022028
[17] 宋阳 . L-氨基酸脱氨酶分子改造及生物合成α-酮异己酸. 无锡: 江南大学, 2018.
Song Y . Molecular modification of L-amino acid deaminase and biosynthesis of α-ketoisocaproate. Wuxi: Jiangnan University, 2018.
[1] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[2] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[3] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.
[4] 张旭辉, 张红楠, 李勇, 汪文强. 抑制西瓜蔓枯病菌的生防真菌筛选、鉴定及发酵条件优化[J]. 中国生物工程杂志, 2017, 37(5): 76-86.
[5] 李炳娟, 李玉霞, 李北平, 凌焱, 周围, 刘刚, 张景海, 岳俊杰, 陈惠鹏. 前手性酮全细胞转化体系中甲酸脱氢酶C-端无序结构与转化效率的关系研究[J]. 中国生物工程杂志, 2013, 33(8): 1-10.
[6] 刘启刚, 代云见, 张勇侠, 王保成, 王明蓉. 抗IgE单链抗体在大肠杆菌中可溶性高效表达条件的研究[J]. 中国生物工程杂志, 2012, 32(11): 23-28.
[7] 刘启刚, 代云见, 张勇侠, 王保成, 王明蓉. 抗IgE单链抗体在大肠杆菌中可溶性高效表达条件的研究[J]. 中国生物工程杂志, 2012, 32(11): 23-28.
[8] 奉灵波, 周瑞芳, 赵辰龙, 陈桂光, 李杨瑞, 李楠. 利用甘蔗糖蜜酒精发酵液生产腐植酸的菌种鉴定及发酵条件研究[J]. 中国生物工程杂志, 2012, 32(10): 80-85.
[9] 陈圣, 李艳, 刘欢, 严明, 许琳. 生物法合成尿苷二磷酸葡萄糖的研究进展[J]. 中国生物工程杂志, 2012, 32(09): 125-130.
[10] 李小冬, 杨娜, 万永虎, 吴嘉, 贾东晨, 乔敏. 表面展示工程在酒精发酵方面的应用[J]. 中国生物工程杂志, 2012, 32(08): 107-110.
[11] 艾佐佐, 颜日明, 袁锦云, 张志斌, 朱笃. 响应面法优化木薯淀粉发酵生产单细胞油脂工艺[J]. 中国生物工程杂志, 2012, 32(07): 66-72.
[12] 周露, 刘进元. 不同提取液提取水稻幼苗质外体蛋白效果的比较[J]. 中国生物工程杂志, 2011, 31(01): 51-55.
[13] 许丽丽, 阎光宇, 王全喜, 吴双秀. 转基因衣藻lba及对照藻产氢培养条件的优化[J]. 中国生物工程杂志, 2010, 30(11): 44-49.
[14] 崔堂兵 刘清香. 尖孢镰刀菌生产蒽醌色素的液体发酵条件研究[J]. 中国生物工程杂志, 2010, 30(09): 56-61.
[15] 郭明 胡昌华. 生物转化—从全细胞催化到代谢工程[J]. 中国生物工程杂志, 2010, 30(04): 110-115.