Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (11): 8-13    
研究报告     
重组半胱氨酸脱巯基酶AtLCD的表达、纯化及酶学性质
袁慧虹1, 梁雅丽1,2, 沈洁洁1, 张丽萍1, 刘志强1, 裴雁曦1
1 山西大学生命科学学院 太原 030006;
2 山西省生物研究所 太原 030006
Expression, Purification and Enzymatic Characterization of Arabidopsis L-Cysteine Desulfhydrase
YUAN Hui-hong1, LIANG Ya-li1,2, SHEN Jie-jie1, ZHANG Li-ping1, LIU Zhi-qiang1, PEI Yan-xi1
1 School of Life Science Shanxi University, Taiyuan 030006, China;
2 Biology Institute of Shanxi, Taiyuan 030006, China
 全文: PDF(715 KB)   HTML
摘要: 目的:在重组大肠杆菌中表达重组拟南芥L-半胱氨酸脱巯基酶AtLCD(H2S内源产生关键酶),确定最佳诱导表达和纯化条件,并研究重组酶的酶学性质。方法:对大肠杆菌BL21 (DE3)/pET28a-LCD进行异丙基-β-D-硫代半乳糖苷 (IPTG)诱导培养,将纯化的目的蛋白AtLCD进行酶学性质的研究。结果:重组蛋白的最佳诱导表达条件为0.1 mmol/L IPTG,30℃诱导3 h。500 mmol/L的咪唑洗脱Ni柱可得较纯的目的蛋白。重组酶性质研究结果表明,酶的最适pH为9.5,最适作用温度为37℃,最适条件下的以L-Cys为底物的米氏常数(Km)为1.572 mmol/L,Vmax为1.52 nmol/mg·min。金属离子Mg2+,Fe3+和EDTA对重组酶的活性有一定的抑制作用,Ba2+、Ca2+和Co2+在一定程度上提高了酶的活性,其中Co2+效果更强。蛋白变性剂SDS和酶抑制剂羟胺也不同程度地抑制了酶的活性。结论:明确了重组AtLCD的酶学性质和最佳诱导表达及纯化条件,为该LCD的深入研究和气体信号分子H2S在植物应答逆境胁迫机制的研究奠定了基础。
关键词: 硫化氢AtLCD酶学性质    
Abstract: Objective: The recombinant Arabidopsis thaliana L-Cysteine Desulfhydrase (AtLCD) that catalyze the generation of endogenous H2S was expressed in recombinant E. coli BL21 (DE3)/pET28a-LCD strains. We characterized a AtLCD from E. coli and optimized its the condition of induction and purification. Methods: AtLCD were purified from E. coli BL21 (DE3)/pET28a-LCD to analyze its enzymatic properties after it was induced by isopropyl-b-D-thiogalactopyranoside (IPTG). Results: The optimized conditions were: the AtLCD protein was induced by 0.1 mmo/L IPTG at 30℃ for 3 h, and purified through Ni–AKTA column, and the purified AtLCD of optimized imidazole was 500 mmol/L. The results shows that the Optimal pH value and temperature of the AtLCD were 9.5 and 37℃, respectively. Under the optimum conditions, Km value and Vmax of the AtLCD for hydrolysis of L-Cysteine was 1.572 mmol/L and 1.52 nmol/ (mg·min). Effects of metal ions on the activity of recombination AtLCD showed that Mg2+, Fe3+ and EDTA inhibited the enzyme activity lightly, while Ba2+ , Ca2+ and Co2+ enhanced the enzyme activity, Co2+ enhanced it obviously. Moreover, the recombination AtLCD activity was inhibited varying degrees by SDS and hydroxylamine. Conclusion: Enzymatic properties of AtLCD was obtained and optimized its the condition of induction and purification. It will provide theoretical basis for AtLCD and response to adversity stress mechanism of an important gasotransmitter H2S in plants.
Key words: Hydrogen sulfide    L-Cysteine Desulfhydrase    Enzymatic properties
收稿日期: 2013-08-07 出版日期: 2013-11-25
ZTFLH:  Q342  
基金资助: 国家自然科学基金(31372085)、山西省回国留学人员(2011-007)资助项目
通讯作者: 裴雁曦     E-mail: peiyanxi@sxu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
袁慧虹
梁雅丽
沈洁洁
张丽萍
刘志强
裴雁曦

引用本文:

袁慧虹, 梁雅丽, 沈洁洁, 张丽萍, 刘志强, 裴雁曦. 重组半胱氨酸脱巯基酶AtLCD的表达、纯化及酶学性质[J]. 中国生物工程杂志, 2013, 33(11): 8-13.

YUAN Hui-hong, LIANG Ya-li, SHEN Jie-jie, ZHANG Li-ping, LIU Zhi-qiang, PEI Yan-xi. Expression, Purification and Enzymatic Characterization of Arabidopsis L-Cysteine Desulfhydrase. China Biotechnology, 2013, 33(11): 8-13.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I11/8

[1] Yang G, Cao K, Wu L Y, et al. Cystathionine gamma-Lyase over expression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1. J Biol Chem, 2004, 279 (47): 49199-49205.
[2] Wang R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter. FASEB J, 2002, 16 (13): 1792-1798.
[3] Ju Y, Zhang W, Pei Y, et al. H2S signaling in redox regulation of cellular functions. Can J Physiol Pharmacol, 2013, 91 (1): 8-14.
[4] Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev, 2012, 92 (2): 791-896.
[5] Zhang H, Hu S L, Zhang Z J, et al. Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biol Tec, 2011, 60 (3): 251-257.
[6] Zhang H, Hu L Y, Li P, et al. Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plantarum, 2010, 54 (4): 743-747.
[7] Liu J, Hou L X, Liu X, et al. Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana. Chinese Sci Bul, 2011, 56 (33): 3547-3553.
[8] 崔为体, 沈文飚. 植物中硫化氢的生理功能及其分子机理. 生命的化学, 2012, 32 (4): 385-389. Cui W T, Shen W B. Physiological function and its molecular mechanism of hydrogen sulfide in plants. Chemistry of Life, 2012, 32(4): 385-389.
[9] Li Z G, Yang S Z, Long W B, et al. Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ, 2013, 36 (8): 1564-1572.
[10] Harrington H M, Smith I K. Cysteine metabolism in cultured tobacco cells. Plant Physiol, 1980, 65 (1): 151-155.
[11] Jin Z P, Shen J J, Qiao Z J, et al. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun, 2011, 414 (3): 481-486.
[12] Shen J J, Qiao Z J, Xing T J, et al. Cadmium toxicity is alleviated by AtLCD and AtDCD in Escherichia coli. J Appl Microbiol, 2012, 113 (5): 1130-1138.
[13] Li Y W, Gong Z H, Mu Y, et al. An Arabidopsis mutant atcsr-2 exhibits high cadmium stress sensitivity involved in the restriction of H2S emission.J Zhejiang Univ (Sci B), 2012, 113 (12): 1006-1014.
[14] álvarez C, Calo L, Romero L C, et al. An O-acetylserine (thiol) lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol, 2010, 152 (2): 656-669.
[15] 赵永芳. 生物化学技术原理及其应用.第2版.武汉:武汉大学出版社, 1994:51-55. Zhao Y F. Biochemical technology principle and application. 2nd ed. Wuhan: Wuhan University Press, 1944: 51-55.
[16] Nacasawa T, Ishii T, Kumagai H, et al. D-Cysteine desulfhydrase of Escherichia coli. Purification and characterization. Eur J Biochem, 1985, 153 (3): 541-551.
[17] Riemenschneider A, Wegele R, Schmidt A, et al. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FASEB J, 2005, 272 (5): 1291-1304.
[1] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[2] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[3] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[4] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[5] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[6] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[7] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[8] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[9] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[10] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[11] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[12] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[13] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[14] 王世伟, 王敏, 王卿惠. Rhodococcus ruber CGMCC3090腈水合酶纯化、酶学性质及结晶研究[J]. 中国生物工程杂志, 2017, 37(10): 42-52.
[15] 谢喜珍, 林娟, 谢勇, 叶秀云. 海洋来源琼胶酶的分离纯化及酶学性质研究[J]. 中国生物工程杂志, 2017, 37(1): 46-52.