Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (05): 128-132    
综述     
类弹性蛋白多肽及其在生物医学材料的应用
黄凯宗,王文研,张光亚**
华侨大学生物工程与技术系 厦门 361021
Advances in Applications of Elastin-like Polypeptides in Biomedical Materials
HUANG Kai-zong,WANG Wen-yan,ZHANG Guang-ya
Department of Bioengineering and Biotechnology,Huaqiao University,Xiamen  362021,China
 全文: PDF(422 KB)   HTML
摘要:

类弹性蛋白多肽是一种人造基因工程蛋白质聚合物,其结构主要由五肽重复串连序列单元 (GVGXP) 的这一肽段单元重复组成。由于具有可逆相变特征,并可进行高通量生产,加之良好的生物相容性及生物可降解性,使其在新型生物医学材料方面展示了广阔的应用前景。概括了类弹性蛋白多肽的相变机理、合成方法及在生物医学材料上的应用,重点阐述了类弹性蛋白多肽在组织工程、靶向肿瘤、构造药物载体微粒的应用。

关键词: 类弹性蛋白相变温度组织工程药物载体生物医学材料    
Abstract:

Elastin-like polypeptides(ELPs) were a family of artificial, genetically encodable polypeptidesthey are primarily composed of the repeating pentapeptide sequence GVGXP. Due to their reversible phase transition characteristics, ultra-high production, excellent biocompatibility and biodegradation, ELPs had an intensive potential in new biomedical materials. Describes principle of ELPs’ phase transition, and its applications in biomedical materials,especially gives emphasis to introduce the applications of tissue engineering, targeting tumor and constructing of drug carrier particle.

Key words: Elastin-like polypeptides    Transition temperature    Tissue engineering    Drug carrier    Biomedical materials
收稿日期: 2009-11-26 出版日期: 2010-05-25
基金资助:

国家自然科学基金(20806031)、福建省自然科学基金(2009J01030)资助项目

通讯作者: 张光亚     E-mail: zhgyghh@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄凯宗
王文研
张光亚

引用本文:

黄凯宗 王文研 张光亚. 类弹性蛋白多肽及其在生物医学材料的应用[J]. 中国生物工程杂志, 2010, 30(05): 128-132.

HUANG Kai-Zong, WANG Wen-Xing, ZHANG Guang-E. Advances in Applications of Elastin-like Polypeptides in Biomedical Materials. China Biotechnology, 2010, 30(05): 128-132.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I05/128

[1] Urry D W,Luan C H,Parker T M ,Gowda D C,et al.Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity.Journal of the American Chemical Society,1991,113(11):43464348. 
[2] Urry D W.Physical chemistry of biological free energy transduction as demonstrated by elastic proteinbased polymers.Journal of Physical Chemistry B,1997,101(51):1100711028. 
[3] Long M M,Urry D W,Cox B A,et al.Coacervation of repeat sequences of elastin.Biophys,1975,15:A71(Abstr). 
[4] Urry D W.Molecular mechanisms of elastin coacervation and coacervate calcification.Journal of the American Chemical Society,1976,61:205212. 
[5] Urry D W.Molekulare Maschinen: Wie Bewegung und andere Funktionen lebender Organismen aus reversiblen chemischen ?nderungen entstehen.Angewandte Chemie,2006,105:859883. 
[6] Urry D W. Biomolekulare maschinen aus elastischen polymeren.Spektrum der Wissenschaft,1995,4:4447. 
[7] Dybal J,Schmidt P,Kurková D,et al.Temperature induced conformational transitions of elastinlike polypentapeptides studied by Raman and NMR spectroscopy.Spectroscopy,2002,16:251255. 
[8] Gross P C,Possartb W,Zeppezauer M.An alternative structure model for the polypentapeptide in elastin.Journal of Biosciences,2003,58(1112):873878 . 
[9] Serrano V,Liu W,Franzen S.An infrared spectroscopic study of the conformational transition of elastinlike polypeptides.Biophysical Journal,2007,93:24292435. 
[10] Urry D W,Parker T M.Mechanics of elastin: molecular mechanism of biological elasticity and its relationship to contraction.Journal of Muscle Research and Cell Motility,2002,23:543559. 
[11] Urry D W,Hugel T,Seitz M,et al.Elastin: a representative ideal protein elastomer.The Royal Society,2002,357:169184. 
[12] RodríguezCabello J C,Reguera J,Alonso M,et al.Endothermic and exothermic components of an inverse temperature transition for hydrophobic association by TMDSC.Chemical Physics Letters,2004,388:127131. 
[13] Chow D,Nunalee M L,Lim D W.Peptidebased biopolymers in biomedicine and biotechnology.Materials Science and Engineering R,2008,62:125155. 
[14] Meyer D E,Chilkoti A.Genetically encoded synthesis of proteinbased polymers with precisely specified molecular weight and sequence by recursive directional ligation:examples from the elastinlike polypeptide system.Biomacromolecules,2002,3:357367. 
[15] Chow D C,Dreher M R,CarlsonK T,et al.Ultrahigh expression of a thermally responsive recombinant fusion protein in E.coli.Biotechnol Prog,2006,22(3):638646. 
[16] Langer R,Vacanti J P.Tissue engineering.Science,1993,260:920927. 
[17] Urry D W,Xu T C,Parker T M.Elastic proteinbased polymers in soft tissue augmentation and generation.Journal of Biomaterials SciencePolymer Edition,1998,9:10151048. 
[18] Betre H,Setton L A,Meyer D E,et al.Characterization of a genetically engineered elastinlike polypeptide for cartilaginous tissue repair.Biomacromolecules,2002,3 (5):910916. 
[19] Betre H; Ong S R; Guilak F,et al.Chondrocytic differentiation of human adiposederived adult stem cells in elastinlike polypeptide.Biomaterials,2006,27:9199. 
[20] Lim D W,Nettles D L,Setton L A,et al.In situ crosslinking of elastinlike polypeptide block copolymers for tissue repair.Biomacromolecules,2008,9:222230. 
[21] Martín L,Alonso M,Girotti A,et al.Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastinlike polymers,Biomacromolecules,2009,10:30153022. 
[22] MartínezOsorio H,JuárezCampo M,Diebold Y,et al.Genetically engineered elastinlike polymer as a substratum to culture cells from the ocular surface.Current Eye Research,2009,34(1):4856. 
[23] Annabi N,Mithieux S M,Boughton E A,et al.Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro.Biomaterials,2009,3:18. 
[24] Kyle S,Aggeli A,Ingham E,et al.Production of selfassembling biomaterials for tissue engineering.Trends in Biotechnology,2009,27(7):423433. 
[25] Hart D S,Gehrke S H.Thermally associating polypeptides designed for drug delivery produced by genetically engineered cells.Pharmaceutical Sciences,2007,96:484516. 
[26] Meyer D E,Kong G A,Dewhirst M W,et al.Targeting a genetically engineered elastinlike polypeptide to solid tumors by local hyperthermia.Cancer Research,2001,61(4):15481554. 
[27] Liu W,Dreher M R,Furgeson D Y,et al.Tumor accumulation degradation and pharmacokinetics of elastinlike polypeptides in nude mice.Journal of Controlled Release,2006,116 (2):170178. 
[28] Dreher M R,Liu W,Michelich C R,et al.Thermal cycling enhances the accumulation of a temperaturesensitive biopolymer in solid tumors.Cancer Research.2007,67(9):44184424. 
[29] Ryu B Y,Sohn J S,Hess M,et al.Synthesis and anticancer efficacy of rapid hydrolysed watersoluble paclitaxel prodrugs.Biomaterials Science,2008,19 (3):311324. 
[30] Yeung T K,Hopewell J W,Simmonds R H,et al.Reduced cardiotoxicity of doxorubicin given in the form of N(2hydroxypropyl)methacrylamide conjugates and experimental study in the rat.Cancer Chemotherapy and Pharmacology,1991,29(2):105111. 
[31] Duncan R,Coatsworth J K,Burtles S.Preclinical toxicology of a novel polymeric antitumour agent:HPMA copolymerdoxorubicin (PK1) .Human and Experimental Toxicology,1998,17 (2):93104. 
[32] Betre H,Liu W,Zalutsky M R,et al.A thermally responsive biopolymer for intraarticular drug delivery.Journal of Controlled Release,2006,115 (2):175182. 
[33] Shamji M F,Whitlatch L,Friedman A H,et al.An injectable and in situgelling biopolymer for sustained drug release following perineural administration.Spine,2008,33(7):748754. 
[34] Fujita Y,Mie M,Kobatake E.Construction of nanoscale protein particle using temperaturesensitive elastinlike peptide and polyaspartic acid chain.Biomaterials,2009,30:34503457. 
[35] Osborne J L,Farmer R,Woodhouse K A.Selfassembled elastinlike polypeptide particles.Acta Biomaterialia.2008,4:4957. 
[36] Wu Y Q,MacKay J A,McDaniel J R,et al.Fabrication of elastinLike polypeptide nanoparticles for drug delivery by electrospraying.Biomacromolecules,2009,10:19–24. 
[37] MacKay J A,Chen M,McDaniel J R,et al.Selfassembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection.Nature Materials.2009,8:993999.

[1] 孙莉萍,徐宛,李孟伟,曾茹,翁建. 孢粉素的物理化学性质和生物医学应用研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 92-100.
[2] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[3] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[4] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[5] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[6] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[7] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[8] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[9] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[10] 潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.
[11] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[12] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[13] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[14] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[15] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.