Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (9): 65-73    DOI: 10.13523/j.cb.20180910
综述     
口服抗癌药物纳米载体的研究进展 *
潘晓倩1,熊向源1,2,**(),龚妍春2,李资玲2,李玉萍2
1 江西科技师范大学药学院 南昌 330013
2 江西科技师范大学生命科学学院 南昌 330013
Advances in Research of Oral Anticancer Drug Nanocarrier
Xiao-qian PAN1,Xiang-yuan XIONG1,2,**(),Yan-chun GONG2,Zi-ling LI2,Yu-ping LI2
1 School of Pharmaceutical Sciences, Jiangxi Science and Technology Normal University,Nanchang 330013,China
2 School of Life Sciences, Jiangxi Science and Technology Normal University,Nanchang 330013,China
 全文: PDF(1498 KB)   HTML
摘要:

实现抗癌药物的口服给药,对于癌症的化疗及患者的生活会有很大的方便性。但大多数抗癌药物直接口服给药时,由于受到胃肠道的屏蔽作用导致生物利用度降低,所以寻找一种有效的药物载体,对于实现抗癌药物的口服给药是至关重要的。纳米技术的出现,带动了纳米药物载体的发展,使得抗癌药物的口服给药有了很大的突破。对不同材料,主要包括合成高分子材料、天然高分子材料作为口服抗癌药物载体的特点以及体内体外的研究结果进行回顾和综述。

关键词: 药物载体口服给药高分子共聚物纳米粒子    
Abstract:

Cancer chemotherapy and the patient’s life will be very convenient if oral administration of anti-cancer drugs can be achieved. For most anti-cancer drugs, their bioavailability and treatment efficiency will be decreased by oral administration, due to the gastrointestinal barrier. So it is important to find an effective drug carrier for oral administration of anticancer drugs. The emergence of nanotechnology, led to the development of nano-drugs. Therefor a great breakthrough has been achieved for oral administration of anti-cancer drugs. The research progress of different materials, including synthetic polymer materials, natural macromolecular materials and liposomes as oral anticancer drug carriers, including their in vivo or in vitro studies has been reviewed.

Key words: Drug carriers    Oral administration    Anticancer drugs    Nano particles
收稿日期: 2018-04-22 出版日期: 2018-10-12
基金资助: * 国家自然科学基金(21664007);江西省主要学科学术和技术带头人培养计划(20153BCB22009);江西省高等学校科技落地计划(KJLD13071)
通讯作者: 熊向源     E-mail: xyxiong@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘晓倩
熊向源
龚妍春
李资玲
李玉萍

引用本文:

潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.

Xiao-qian PAN,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. Advances in Research of Oral Anticancer Drug Nanocarrier. China Biotechnology, 2018, 38(9): 65-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180910        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I9/65

图1  纳米粒子在上皮细胞的摄取[14]
Material Modified group Modification purpose Model drug Key finding Ref
PLGA TPGS/PVA 减小纳米粒子的粒径,提高药物包埋 紫杉醇 TPGS对聚合物的修饰有利于提高细胞对纳米粒子的吸收 [17-18]
TPGS 改善药物在剂型中的溶解性 紫衫醇 为药物的口服输送提供了实验依据 [9,19-20]
FA 增加纳米载体的靶向性 紫杉醇 叶酸功能化的纳米粒子具有提高药物的口服生物利用度的潜力 [21]
PLA 三苯氧胺 该药物的纳米剂型能够降低药物的毒副作用 [22]
TPGS/MMT 提高药物的包埋,增加纳米粒子的黏膜黏附性 紫杉醇 TPGS/MMT对聚合物的修饰作为药物的纳米载体,提高了药物在体内的生物利用度 [4,23]
PEG 提高PLA纳米粒子在胃肠道中的稳定性 放射性标记的破伤风类毒素 增加了纳米粒子在肠道中的吸收,提高了药物的血浆浓度 [24]
Material Modified group Modification purpose Model drug Key finding Ref
PCL共聚物 DDAB 增加纳米粒子在细胞表面的保留时间 多烯紫杉醇 修饰后的纳米载体提高了药物的摄取率,以及细胞毒性 [25]
聚酸酐 环糊精 提高药物的包埋,调节药物从纳米载体中的释放 喜树碱/紫杉醇 通过环糊精对纳米载体的修饰,在一定程度上可以提高药物在体内的口服生物利用度 [16,26]
PEG 抑制P-gp及细胞色素P450的活性 紫杉醇 改善了药物载体在体内的生物黏附性 [27-28]
壳聚糖 单油酸甘油酯 提高药物载体在体内的生物黏附性 紫杉醇 使PTX在低剂量下达到治疗浓度,减少药物的不良作用 [29]
羧甲基壳聚糖 增加上皮细胞的通透性,维持纳米粒子在胃肠道中的稳定性 盐酸阿霉素 证明了该剂型是盐酸阿霉素,一种安全有效的口服给药载体 [30]
硫酸基,辛基 抑制P-gp的外排 紫杉醇 潜在的能够增强P-gp底物口服吸收 [31-32]
透明质酸 壳聚糖 能够保护HA-PTX的脂键不被破坏 紫杉醇 提高药物的靶向性,保护药物的稳定性 [33]
磷脂双分子 阿霉素 该剂型能够提高药物在肿瘤细胞中的摄取 [34]
N-三甲基壳聚糖氯化物 增加粒子的稳定性及在肠道中的吸收 姜黄素 较小粒径的脂质体有利于提高药物的血浆浓度 [35]
表1  不同材料作为药物口服输送载体
图2  Docetaxel-loaded M-PLGA-TPGS 纳米粒子制备示意图 (a)docetaxel-loaded M-PLGA-TPGS 纳米粒子DLS粒径分布 (b)docetaxel-loaded M-PLGA-TPGS 纳米粒子的FESEM图像 (c)docetaxel-loaded M-PLGA-TPGS 纳米粒子的TEM图像(d)[18]
图3  NOSC胶束对PTX口服吸收的影响[31]
图4  CS/HA-PTX CNPs的制备与应用原理[33]
[1] Guo Y, Chu M, Tan S , et al. Chitosan-g-tpgs nanoparticles for anticancer drug delivery and overcoming multidrug resistance. Molecular Pharmaceutics, 2014,11(1):59-70.
doi: 10.1021/mp400514t
[2] Feng S S, Zhao L Y, Tang J T . Nanomedicine for oral chemotherapy. Nanomedicine, 2011,6(3):407-410.
doi: 10.2217/nnm.11.7
[3] Li P Y, Lai P S, Hung W C , et al. Vitamin e tpgs used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (taxol ®) . Journal of Controlled Release, 2002,80(1):129-144.
doi: 10.1016/S0168-3659(02)00025-1
[4] Feng S S, Mei L, Anitha P , et al. Poly(lactide)-vitamin e derivative/montmorillonite nanoparticle formulations for the oral delivery of docetaxel. Biomaterials, 2009,30(19):3297-3306.
doi: 10.1016/j.biomaterials.2009.02.045
[5] Chen H B, Zheng Y, Tian G , et al. Oral delivery of dmab-modified docetaxel-loaded plga-tpgs nanoparticles for cancer chemotherapy. Nanoscale Research Letters, 2010,6(1):4-14.
[6] Thanki K, Gangwal R P, Sangamwar A T , et al. Oral delivery of anticancer drugs: Challenges and opportunities. Journal of Control Release, 2013,170(1):15-40.
doi: 10.1016/j.jconrel.2013.04.020
[7] Ensign L M, Cone R, Hanes J . Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews, 2012,64(6):557-570.
doi: 10.1016/j.addr.2011.12.009
[8] Lai S K, Wang Y Y, Hanes J . Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Advance Drug Delivery Reviews, 2009,61(2):158-171.
doi: 10.1016/j.addr.2008.11.002
[9] Zhao L Y, Feng S S . Enhanced oral bioavailability of paclitaxel formulated in vitamin e-tpgs emulsified nanoparticles of biodegradable polymers: In vitro and in vivo studies. Journal of Pharmaceutical Sciences, 2010,99(8):3552-3560.
doi: 10.1002/jps.22113
[10] Gottesman M M, Fojo T, Bates S E . Multidrug resistance in cancer: Role of atp-dependent transporters. Nature Reviews Cancer, 2002,2(1):48-58.
doi: 10.1038/nrc706
[11] Siarheyeva A, Lopez J J, Glaubitz C . Localization of multidrug transporter substrates within model membranes. Biochemistry, 2006,45(19):6203-6211.
doi: 10.1021/bi0524870
[12] Kinoshita R, Ishima Y , Chuang V T G , et al. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of epr effect and albumin-protein interactions using snitrosated human serum albumin dimer. Biomaterials, 2017,140:162-169.
doi: 10.1016/j.biomaterials.2017.06.021
[13] Beloqui A, des Rieux A, Préat V . Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Advanced Drug Delivery Reviews, 2016,106:242-255.
doi: 10.1016/j.addr.2016.04.014
[14] Li Z, Jiang H, Xu C , et al. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids, 2015,43:153-164.
doi: 10.1016/j.foodhyd.2014.05.010
[15] Pridgen E M, Alexis F, Kuo T T , et al. Transepithelial transport of fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Science Translational Medicine, 2013,5(213):1-8.
[16] Agueros M, Zabaleta V, Espuelas S , et al. Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles. Journal of Control Release, 2010,145(1):2-8.
doi: 10.1016/j.jconrel.2010.03.012
[17] Win K Y, Feng S S . Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 2005,26(15):2713-2722.
doi: 10.1016/j.biomaterials.2004.07.050
[18] Tao W, Zeng X, Liu T , et al. Docetaxel-loaded nanoparticles based on star-shaped mannitol-core plga-tpgs diblock copolymer for breast cancer therapy. Acta Biomaterialla, 2013,9(11):8910-8920.
doi: 10.1016/j.actbio.2013.06.034
[19] Collnot E M, Baldes C, Schaefer U F , et al. Vitamin e tpgs p-glycoprotein inhibition mechanism: Influence on conformational flexibility, intracellular atp levels, and role of time and site of access. Molecular Pharmaceutics, 2010,7(3):642-651.
doi: 10.1021/mp900191s
[20] Zhu H, Chen H, Zeng X , et al. Co-delivery of chemotherapeutic drugs with vitamin e tpgs by porous plga nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials, 2014,35(7):2391-2400.
doi: 10.1016/j.biomaterials.2013.11.086
[21] Roger E, Kalscheuer S, Kirtane A , et al. Folic acid functionalized nanoparticles for enhanced oral drug delivery. Molecular Pharmaceutics, 2012,9(7):2103-2010.
doi: 10.1021/mp2005388
[22] Pandey S K, Ghosh S, Maiti P , et al. Therapeutic efficacy and toxicity of tamoxifen loaded pla nanoparticles for breast cancer. International Journal of Biological Macromolecules, 2015,72:309-319.
doi: 10.1016/j.ijbiomac.2014.08.012
[23] Zhang Z P, Feng S S . Self-assembled nanoparticles of poly(lactide)-vitamin e tpgs copolymers for oral chemotherapy. International Journal of Pharmaceutics, 2006,324(2):191-198.
doi: 10.1016/j.ijpharm.2006.06.013
[24] Tobío M, Sánchez A, Vila A , et al. The role of peg on the stability in digestive fluids and in vivo fate of peg-pla nanoparticles following oral administration. Colloids and Surfaces B -Biointerfaces, 2000,18(3):315-323.
doi: 10.1016/S0927-7765(99)00157-5
[25] Zhao T J, Chen H Z, Yang L X , et al. Ddab-modified tpgs-b-(pcl-ran-pga) nanoparticles as oral anticancer drug carrier for lung cancer chemotherapy. NANO: Brief Reports and Reviews, 2013,8(2):1350014-1350024.
[26] Huarte J, Espuelas S, Lai Y , et al. Oral delivery of camptothecin using cyclodextrin/poly(anhydride) nanoparticles. International Journal of Pharmaceutics, 2016,506(1):116-128.
doi: 10.1016/j.ijpharm.2016.04.045
[27] Yoncheva K, Lizarraga E, Irache J M . Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): Preparation and evaluation of their bioadhesive properties. European Journal of Pharmaceutical Sciences, 2005,24(5):411-419.
doi: 10.1016/j.ejps.2004.12.002
[28] Zabaleta V, Ponchel G, Salman H , et al. Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: Permeability and pharmacokinetic study. European Journal of Pharmaceutics and Biopharmaceutics, 2012,81(3):514-523.
doi: 10.1016/j.ejpb.2012.04.001
[29] Trickler W J, Nagvekar A A, Dash A K . A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSciTech, 2008,9(2):486-493.
doi: 10.1208/s12249-008-9063-7
[30] Feng C, Wang Z, Jiang C , et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 2013,457(1):158-167.
doi: 10.1016/j.ijpharm.2013.07.079
[31] Mo R, Jin X, Li N , et al. The mechanism of enhancement on oral absorption of paclitaxel by n-octyl-o-sulfate chitosan micelles. Biomaterials, 2011,32(20):4609-4620.
doi: 10.1016/j.biomaterials.2011.03.005
[32] Zhang C, Qu G W, Sun Y J , et al. Pharmacokinetics, biodistribution, efficacy and safety of n-octyl-o-sulfate chitosan micelles loaded with paclitaxel. Biomaterials, 2008,29(9):1233-1241.
doi: 10.1016/j.biomaterials.2007.11.029
[33] Li J, Huang P, Chang L , et al. Tumor targeting and ph-responsive polyelectrolyte complex nanoparticles based on hyaluronic acid-paclitaxel conjugates and chitosan for oral delivery of paclitaxel. Macromolecular Research, 2013,21(12):1331-1337.
doi: 10.1007/s13233-013-1171-x
[34] Ryan C W, Fleming G F, Janisch L , et al. A phase i study of liposomal doxorubicin (doxil) with topotecan. American Journal of Clinical Oncology, 2000,23(3):297-300.
doi: 10.1097/00000421-200006000-00019
[35] Chen H, Wu J, Sun M , et al. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. Journal of Liposome Research, 2012,22(2):100-109.
doi: 10.3109/08982104.2011.621127
[36] Astete C E, Sabliov C M . Synthesis and characterization of plga nanoparticles. Journal of Biomaterials Science(Polymer Edition), 2006,17(3):247-289.
doi: 10.1163/156856206775997322
[37] Mei L, Zhang Z P, Zhao L Y , et al. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Advanced Drug Delivery Reviews, 2013,65(6):880-890.
doi: 10.1016/j.addr.2012.11.005
[38] Xie X X, Tao Q, Zou Y N , et al. Plga nanoparticles improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms. Journal of Agricultural and Food Chemistry, 2011,59(17):9280-9289.
doi: 10.1021/jf202135j
[39] Palacio J, Orozco V H, López B L . Effect of the molecular weight on the physicochemical properties of poly(lacticacid) nanoparticles and on the amount of ovalbumin adsorption. J Braz Chem Soc, 2011,22(12):2304-2311.
[40] Khutoryanskiy V V . Advances in mucoadhesion and mucoadhesive polymers. Macromolecular Bioscience, 2011,11(6):748-764.
doi: 10.1002/mabi.201000388
[41] Li J, Sabliov C . Pla/plga nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnology Reviews, 2013,2(3):245-257.
[42] Muthu M S, Singh S . Studies on biodegradable polymeric nanoparticles of risperidone: In vitro and in vivo evaluation. Nanomedicine, 2008,3(3):305-319.
doi: 10.2217/17435889.3.3.305
[43] Chawla J S, Amiji M M . Biodegradable poly(o-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. International Journal of Pharmaceutics, 2002,249(1):127-138.
doi: 10.1016/S0378-5173(02)00483-0
[44] Gou M L, Wei X W, Men K , et al. Pcl/peg copolymeric nanoparticles: Potential nanoplatforms for anticancer agent delivery. Current Drug Targets, 2011,12(8):1131-1150.
doi: 10.2174/138945011795906642
[45] Kumar N, Langer R S, Domb A J . Polyanhydrides: An overview. Advanced Drug Delivery Reviews, 2002,54(7):889-910.
doi: 10.1016/S0169-409X(02)00050-9
[46] Wang Y, Li P, Chen F , et al. A novel ph-sensitive carrier for the delivery of antitumor drugs: Histidine-modified auricularia auricular polysaccharide nano-micelles. Scientific Reports, 2017,7(1):1-10.
doi: 10.1038/s41598-016-0028-x
[47] Kolanthai E, Abinaya Sindu P, Thanigai Arul K , et al. Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery. Journal of Photochemistry and Photobiology B: Biology, 2017,166:220-231.
doi: 10.1016/j.jphotobiol.2016.12.005
[48] Anandhakumar S, Krishnamoorthy G, Ramkumar K M , et al. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Materials Science and Engineering: C, 2017,70:378-385.
doi: 10.1016/j.msec.2016.09.003
[49] Palmberger T F, Hombach J, Bernkop-Schnurch A . Thiolated chitosan: Development and in vitro evaluation of an oral delivery system for acyclovir. International Journal of Pharmaceutics, 2008,348(1-2):54-60.
doi: 10.1016/j.ijpharm.2007.07.004
[50] Kamaly N, Yameen B, Wu J , et al. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical Reviews, 2016,116(4):2602-2663.
doi: 10.1021/acs.chemrev.5b00346
[51] Thanou M, Verhoef J C, Junginger H E . Oral drug absorption enhancement by chitosan and its derivatives. Advanced Drug Delivery Reviews, 2001,52(2):117-126.
doi: 10.1016/S0169-409X(01)00231-9
[52] Kumar M N, Muzzarelli R A, Muzzarelli C , et al. Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 2004,104(12):6017-6084.
doi: 10.1021/cr030441b
[53] Hosseinzadeh H, Atyabi F, Dinarvand R , et al. Chitosan-pluronic nanoparticles as oral delivery of anticancer gemcitabine: Preparation and in vitro study. International Journal of Nanomedicine, 2012,7(1):1851-1863.
doi: 10.2217/nnm.12.70
[54] Jiang L Q, Li X M, Liu L R , et al. Thiolated chitosan-modified pla-pcl-tpgs nanoparticles for oral chemotherapy of lung cancer. Nanoscale Research Letters, 2013,8(1):66-77.
doi: 10.1186/1556-276X-8-66
[55] Kogan G, Šoltés L, Stern R , et al. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett, 2007,29(1):17-25.
[56] Sudha P N, Rose M H . Beneficial effects of hyaluronic acid. Advances in Food and Nutrition Research, 2014,72:137-176.
doi: 10.1016/B978-0-12-800269-8.00009-9
[57] Jiao Y, Pang X, Zhai G . Advances in hyaluronic acid-based drug delivery systems. Current Drug Targets, 2016,17(6):720-730.
doi: 10.2174/1389450116666150531155200
[58] Ghosh S C, Alpay S N, Klostergaard J . Cd44: A validated target for improved delivery of cancer therapeutic. Expert Opinion on Therapeutic Targets, 2012,16(7):635-650.
doi: 10.1517/14728222.2012.687374
[59] Medina O P, Zhu Y, Kairemo K . Targeted liposomal drug delivery in cancer. Current Pharmaceutical Design, 2004,10(24):2981-2989.
doi: 10.2174/1381612043383467
[1] 孙莉萍,徐宛,李孟伟,曾茹,翁建. 孢粉素的物理化学性质和生物医学应用研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 92-100.
[2] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[3] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[4] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[5] 褚宇琦,陆飞妃,刘洋,何芳,王大壮,陈立江. 蛋白冠与纳米粒子的相互作用 *[J]. 中国生物工程杂志, 2020, 40(4): 78-83.
[6] 陈宽婷, 姚俊, 阮文辉, 魏钦俊, 鲁雅洁, 曹新. 新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究[J]. 中国生物工程杂志, 2013, 33(4): 101-105.
[7] 王萍, 毛红菊. 纳米材料在生物医学检测中的应用[J]. 中国生物工程杂志, 2011, 31(9): 88-95.
[8] 黄凯宗 王文研 张光亚. 类弹性蛋白多肽及其在生物医学材料的应用[J]. 中国生物工程杂志, 2010, 30(05): 128-132.
[9] 孙恩杰, 杨冬. 非病毒型基因载体研究进展[J]. 中国生物工程杂志, 2004, 24(4): 21-25.
[10] 陈初光, 陈虹, 黄秉仁. 脑部靶向给药技术[J]. 中国生物工程杂志, 2004, 24(10): 1-4.