Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志
研究报告     
内部结构可控的大体积三维细胞支架制备研究
陈际达 刘伟 崔磊 曹谊林
上海第二医科大学附属第九人民医院整形外科 上海第二医科大学附属第九人民医院整形外科 上海第二医科大学上海组织工程研究与开发中心
Study on inner structure controllable large volume 3-D scaffolds formation method
 全文: PDF  HTML
摘要: 目的:研究一种可以控制三维细胞支架内部孔隙结构的实验技术,用于制备孔隙结构可控的三维细胞支架,以满足组织工程对支架孔隙结构的要求。方法:均匀混合粘结剂与致孔剂,在离心力作用下去除混合物中多余的粘结剂,应用溶剂浇注/颗粒沥析方法制备三维细胞支架。结果:致孔剂粘结块的结构非常均匀,粘结程度可以通过实验条件控制。例如,直径为100~220μm的致孔剂,在离心力为161g,粘结剂浓度分别为20%和40%时,颗粒间粘结程度分别为33.78±556 (134)μm和42.89±5.87 (132) μm。并且,利用该技术制备的三维多孔支架,其内部孔隙大小取决于致孔剂颗粒大小,孔隙间的通道直径取决于致孔剂的粘结程度,即离心粘结与溶剂浇注/颗粒沥析技术相结合,能够方便地控制三维支架的孔隙结构。例如,当粘结程度为33.78±556 (134) μm时,支架的通道直径为33.34±5.21(12)μm,两者之间无显著差异。 结论:利用离心粘结与溶剂浇注/颗粒沥析技术结合,获得了孔隙呈球形、孔隙间完全连通的、结构均匀的大体积三维细胞支架,并且支架的孔隙以及孔隙间通道大小均可以实现人为控制。
关键词: 三维细胞支架粘结致孔剂组织工程致孔剂    
Abstract: AbstractObjective: To develop a novel method for preparating large volume threedimensional scaffolds, and controlling the pore structure, uniformity, and interconnectivity of the scaffolds to meet the requirement of pore structure for tissue engineering. Methods: Spherical porogen (a pore generating materials made from sodium chlorate) and bonding reagents (developed by our laboratory) were mixed uniformly, the mixture was put in a polypropylene mold (cylindrical vial with microholes on bottom for solution leaving off), the mold containing mixture was centrifuged at a chosen force for 5min to get ride of unwanted solution, then the bonded porogen assembly was cut into halves with a razor blade after completely dried in dessicator at room temperature. The upper, middle and bottom sections of assemblies were observed by optical microscope to detect the bonding uniformity and degree. A chosen polymer (PDLLA) was dissolved in chloroform to prepare a solution of a desired concentration, the polymer solution was cast onto the assembly, and additional casting was repeated after the solvent was evaporated. The dried porogen/polymer discs were removed from the mold, and the top and bottom layers were cut away to obtain flat surfaces. The discs was immersed in distilled water to remove porogen, dried under vacuum, then the scaffolds was harvested for structure characterization. Results: Optical micrographs clearly displayed that the porogen spheres remained spherical appearance and the bonding areas between spherical particles were homogeneous in large dimensional bonded assembly, and there was no statistical difference in bonding extent. In addition, the bonding extent could be controlled by variety of bonding reagent concentration as well as centrifugal force. For instance, the bonding extent was 33.78±5.56 (134) μm and 42.89±5.87 (132) μm respectively, when reagent concentration was 20% and 40% with centrifugal force of 161g and porogen size range of 100~220μm. SEM imagines revealed that the pore size and the diameter of interconnected openings of the scaffolds equaled separately to porogen size and bonding extent in bonded assembly. For example, the diameter of openings was 33.34±5.21(12)μm, when the bonding degree was 33.78±5.56 (134)μm in bonded assembly. Conclusion: With the newly developed bonding reagent and bonding technique, large dimensional biodegradable polymer scaffolds with high porosity as well as with controllable and homogeneous innerstructure can be formed, the pore size of scaffolds as well as diameter of openings between pores can be controlled by adjusting the porogen size and bonding degree in bonded porogen assembly. In addition, the resulting completely interconnected scaffolds have implications for facilitating cell migration, nutrients or waste exchange, abundant cellcell interaction, and potentially improved neural and vascular growth within tissue engineering scaffolds.
Key words: Spherical porogen    Three-dimensional scaffolds    Bonding porogen    Tissue engineering
收稿日期: 2006-01-25 出版日期: 2006-01-25
通讯作者: 陈际达   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘伟
曹谊林
崔磊
陈际达

引用本文:

陈际达,刘伟,崔磊,曹谊林. 内部结构可控的大体积三维细胞支架制备研究[J]. 中国生物工程杂志, .

. Study on inner structure controllable large volume 3-D scaffolds formation method. China Biotechnology, .

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2006/V26/I01/1

[1] 朱帅,金明杰,杨树林. 3D生物打印在软骨修复中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 65-71.
[2] 宋标标,顾奇. 同轴打印小直径组织工程血管*[J]. 中国生物工程杂志, 2021, 41(10): 42-51.
[3] 余幸鸽,林开利. 基于天然水凝胶的生物材料在骨组织工程中的应用*[J]. 中国生物工程杂志, 2020, 40(5): 69-77.
[4] 王元斗,宿烽,李速明. 光交联水凝胶在组织工程中的研究进展[J]. 中国生物工程杂志, 2020, 40(4): 91-96.
[5] 严格,乔韡华,曹红,史嘉玮,董念国. 聚多巴胺的表面修饰功能在组织工程的应用进展*[J]. 中国生物工程杂志, 2020, 40(12): 75-81.
[6] 武慧蓉,温朝辉. 壳聚糖在神经组织工程中的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 73-77.
[7] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[8] 郗来顺,云鹏,王元斗,张冠宏,邢泉生,陈阳生,宿烽. 形状记忆聚合物在组织工程中的应用 *[J]. 中国生物工程杂志, 2018, 38(12): 76-81.
[9] 孙怀远,宋晓康,廖跃华,李晓欧. 压电式微喷技术在细胞打印领域的应用*[J]. 中国生物工程杂志, 2018, 38(12): 82-90.
[10] 李大为, 何进, 何凤利, 刘雅丽, 邓旭东, 叶雅静, 尹大川. 丝素蛋白/壳聚糖复合材料在组织工程中应用的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 111-117.
[11] 罗思施, 汤顺清. 琼脂糖在组织工程中的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 68-74.
[12] 王佃亮. 组织器官三维构建及原位组织工程概念——组织工程连载之四[J]. 中国生物工程杂志, 2014, 34(8): 112-116.
[13] 王佃亮. 种子细胞——组织工程连载之三[J]. 中国生物工程杂志, 2014, 34(7): 108-113.
[14] 王佃亮. 组织工程的诞生与发展——组织工程 连载之一[J]. 中国生物工程杂志, 2014, 34(5): 122-129.
[15] 张志强, 黄向华, 赵林远. 微环境对细胞的影响以及仿生学在组织工程支架中的应用[J]. 中国生物工程杂志, 2014, 34(4): 101-109.