Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (1): 62-71    DOI: 10.13523/j.cb.2011025
    
A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms
CHANG Lu1,HUANG Jiao-fang1,2,**(),DONG Hao1,ZHOU Bin-hui3,ZHU Xiao-juan1,ZHUANG Ying-ping1,**()
1 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China
2 School of Physical Science and Technology (SPST), Shanghai Tech University, Shanghai 201210, China
3 Shanghai Municipal Bureau of Ecology and Environment Law Enforcement Corps, Shanghai 200235, China
Download: HTML   PDF(21462KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the development of industrialization, heavy metal pollution has become a severe environmental hazard, in particular its pollution to water systems and consequently endangering human health, making its remediation an urgent issue. Compared with traditional physical and chemical remediation, bioremediation is green and sustainable. Microorganisms and microbial biofilms play an important role in bioremediation due to their rapid growth, intrinsic nature for dynamic adaption to environments and consequent tolerance to environmental stresses. Synthetic biology has provided a methodology for engineering and reprograming microorganisms and biofilms with robustness for more efficient degradation of environmental pollutants including heavy metals. This review summarizes the current status of heavy metal pollution, the bioremediation mechanism and research progress of microbial remediation, with a focus on the development of functional biofilms engineered by synthetic biology and their applications in bioremediation for heavy metal Pb, Hg, Cd and others. At the end, this review highlights the perspectives for bioremediation of heavy metal pollution.



Key wordsHeavy metal pollution      Bioremediation      Synthetic biology      Microorganisms      Biofilms     
Received: 12 November 2020      Published: 09 February 2021
ZTFLH:  Q819  
Corresponding Authors: Jiao-fang HUANG,Ying-ping ZHUANG     E-mail: huangjf@ecust.edu.cn;ypzhuang@ecust.edu.cn
Cite this article:

CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms. China Biotechnology, 2021, 41(1): 62-71.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2011025     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I1/62

Fig.1 Heavy metals have harmful effects on humans through many ways
Fig.2 The application of synthetic biologically modified microorganisms in the detection and remediation of heavy metal pollution (a) Pseudomonas putida X4 (PczcR3-GFP) with zinc specific biosensor function (b) The response of engineered yeast cells to copper ions (c) The response of engineered Pseudomonas aeruginosa to cadmium ions (d) Structure of the lead inductive RFP expression plasmid in E. coli[59] (e) Schematic illustration for the simultaneous remediation and detection of Hg2+ by carboxylesterase E2 surface-display system of Pseudomonas aeruginosa PA1[60]
Fig.3 Functional characterization of engineered B. subtilis biofilms [75] (a) Confocal microscopic image of TasA-mCherry biofilm (b) Biodegradation of organophosphate pesticides through a two-step biocatalytic cascade reaction using co-cultured strains for biofilms of TasA-OPH and TasA-HisTag
Fig.4 Research progress of synthetic biology modified microbial biofilm in remediation of heavy metal pollution (a) The presence of EPS can significantly enhance the adsorption of copper ions (b) E. coli biofilms engineered through synthetic biology for mercury bioremediation[13] (c) Effect of sulfhydryl binding sites on binding and detoxification of toxic metals in EPS
[1]   Vardhan K H, Kumar P S, Panda R C. A review on heavy metal pollution, toxicity and remedial measures: current trends and future perspectives. Journal of Molecular Liquids, 2019,290:111197.
[2]   Vareda J P, Valente A J M, Duraes L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. Journal of Environmental Management, 2019,246:101-118.
[3]   Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 2014,7(2):60-72.
[4]   Mgbemene C A, Nnaji C C, Nwozor C. Industrialization and its backlash: focus on climate change and its consequences. Environmental Science and Technology, 2016,9(4):301-316.
[5]   Duruibe J O, Ogwuegbu M O C, Egwurugwu J N. Heavy metal pollution and human biotoxic effects. International Journal of the Physical Sciences, 2007,2(5):112-118.
[6]   Vijayaraghavan K, Yun Y S. Bacterial biosorbents and biosorption. Biotechnology Advances, 2008,26(3):266-291.
[7]   Xia Y, Li Y. Study of gelatinous supports for immobilizing inactivated cells of Rhizopusoligosporus to prepare biosorbent for lead ions. International Journal of Environmental Studies, 2002,5:1-6.
[8]   Singh S, Gupta V K. Biodegradation and bioremediation of pollutants: perspectives strategies and applications. International Journal of Pharmacology and Biological Sciences, 2016,10(1):53-65.
[9]   Smanski M J, Zhou H, Claesen J, et al. Synthetic biology to access and expand nature’s chemical diversity. Nature Reviews Microbiology, 2016,14(3):135-149.
[10]   Pekey H, Doğan G. Application of positive matrix factorisation for the source apportionment of heavy metals in sediments: a comparison with a previous factor analysis study . Microchemical Journal, 2013,106:233-237.
[11]   Chen H Y, Teng Y G, Li J, et al. Source apportionment of trace metals in river sediments: a comparison of three methods. Environmental Pollution, 2016,211:28-37.
pmid: 26736053
[12]   Cheng H X, Li M, Zhao C D, et al. Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 2014,139:31-52.
[13]   Tay P, Nguyen P, Joshi N. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synthetic Biology, 2017,6(10):1841-1850.
[14]   Suedel B C, Boraczek J A, Peddicord R K, et al. Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Reviews of Environmental Contamination and Toxicology, 1994,136:21-89.
pmid: 8029491
[15]   Guzzi G, La Porta C A M. Molecular mechanisms triggered by mercury. Toxicology, 2008,244(1):1-12.
pmid: 18077077
[16]   He K M, Wang S Q, Zhang J L. Blood lead levels of children and its trend in China. Science of the Total Environment, 2009,407(13):3986-3993.
[17]   Tong S, Von schirnding Y E, Prapamontol T. Environmental lead exposure: a public health problem of global dimensions. Bulletin of the World Health Organization, 2000,78(9):1068-1077.
[18]   Branvall M L, Bindler R, Emteryd O, et al. Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. Journal of Paleolimnology, 2001,25(4):421-435.
[19]   Watts J. Lead poisoning cases spark riots in China. The Lancet, 2009,374(9693):868.
[20]   Zeng X X, Tang J X, Liu X D, et al. Isolation, identification and characterization of cadmium-resistant Pseudomonas aeruginosa strain E1. Journal of Central South University of Technology, 2009,16(3):416-421.
[21]   王志芳, 肖俊, 罗永巨. 水环境镉污染对养殖鱼类的影响研究进展. 广西科学院学报, 2019,35(3):166-171.
[21]   Wang Z F, Xiao J, Luo Y J. A review of the effects of cadmium on aquaculture. Journal of Guangxi Academy of Sciences, 2019,35(3):166-171.
[22]   Chen L, Zhou S L, Shi Y X, et al. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. The Science of the Total Environment, 2018,615:141-149.
[23]   Rajeshkumar S, Liu Y, Zhang X Y, et al. Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 2018,191:626-638.
[24]   Ke Z X, Xie P, Guo L G. Ecological restoration and factors regulating phytoplankton community in a hypertrophic shallow lake, Lake Taihu, China. Acta Ecologica Sinica, 2019,39(1):81-88.
[25]   Bing H J, Wu Y H, Sun Z B, et al. Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake catchment, China. Journal of Environmental Sciences, 2011,23(10):1671-1678.
[26]   Yan F, Liu C L, Wei B W. Evaluation of heavy metal pollution in the sediment of Poyang Lake based on stochastic geoaccumulation model (SGM). Science of the Total Environment, 2019,659:1-6.
[27]   Chen R H, Chen H Y, Song L T, et al. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. The Science of the Total Environment, 2019,694:133819.
[28]   郭晶, 李利强, 黄代中, 等. 洞庭湖表层水和底泥中重金属污染状况及其变化趋势. 环境科学研究, 2016,29(1):44-51.
[28]   Guo J, Li L Q, Huang D Z, et al. Assessment of heavy metal pollution in surface water and sediment of Dongting Lake. Research of Environmental Sciences, 2016,29(1):44-51.
[29]   De Souza R M, Mathias B M, Da Silveira C L P, et al. Inductively coupled plasma optical emission spectrometry for trace multi-element determination in vegetable oils, margarine and butter after stabilization with propan-1-ol and water. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005,60(5):711-715.
[30]   Bakircioglu D, Kurtulus Y B, Yurtsever S. Comparison of extraction induced by emulsion breaking, ultrasonic extraction and wet digestion procedures for determination of metals in edible oil samples in Turkey using ICP-OES. Food Chemistry, 2013,138(2-3):770-775.
pmid: 23411174
[31]   吕伟明, 张洁, 龚伟达, 等. ICP-MS测定地表水中多个元素的分析方法研究. 环境科学与管理, 2009,34(4):135-139.
[31]   Lv W M, Zhang J, Gong W D, et al. Method for analysis of several elements in surface water by ICP-MS. Environmental Science and Management, 2009,34(4):135-139.
[32]   邹可可, 彭博. 原子吸收光谱法在测定水中重金属的应用. 世界有色金属, 2016,31(15):115-116.
[32]   Zou K K, Peng B. The application of atomic absorption spectromrtry in the determination of heavy metals in water. World Nonferrous Metals, 2016,31(15):115-116.
[33]   江永红. 电感耦合等离子体质谱法和原子荧光法测定植物性食品中硒含量的对比分析. 安徽农业科学, 2015,43(5):228-230.
[33]   Jiang Y H. Comparative of determination of selenium in plant food by inductively coupled plasma mass spectrometry and atomic fluorescence spectrometry. Journal of Anhui Agricultural Sciences, 2015,43(5):228-230.
[34]   庞洁, 陆日贵, 邱棋伟. 氢化物发生-原子荧光光度法同时测定饮用水中砷和汞. 中国卫生检验杂志, 2011,21(8):1898-1899,1902.
[34]   Pang J, Lu Y G, Qiu Q W. Simultaneous determination of arsenic and mercury in drinking water by hydride-generation atomic fluorescence spectrometry. Chinses Journal of Health Laboratory Technology, 2011,21(8):1898-1899,1902.
[35]   Chojnacka K. Biosorption and bioaccumulation the prospects for practical applications. Environment International, 2010,36(3):299-307.
[36]   Raghunandan K, Kumar A, Kumar S, et al. Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by Sphingomonas spp. 3Biotech, 2018,8(1):71.
[37]   Dangi A K, Sharma B, Hill R T, et al. Bioremediation through microbes: systems biology and metabolic engineering approach. Critical Reviews in Biotechnology, 2019,39(1):79-98.
pmid: 30198342
[38]   Dixit R, Malaviya D, Pandiyan K, et al. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 2015,7(2):2189-2212.
[39]   Chen C, Wang J L. Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae . Biomedical and Environmental Sciences, 2007,20(6):478-482.
[40]   Talos K, Pager C, Tonk S, et al. Cadmium biosorption on native Saccharomyces cerevisiae cells in aqueous suspension. Acta Universitatis. Sapientiae, Agriculture and Environment, 2009,1:20-30.
[41]   IgirI B E, Okoduwa S I R, Idoko G O, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of Toxicology, 2018,2018:2568038.
doi: 10.1155/2018/2568038 pmid: 30363677
[42]   Alvarez A, Saez J M, Costa J S D, et al. Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 2017,166:41-62.
[43]   Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arabian Journal of Chemistry, 2014,12(7):1365-1377.
[44]   Mahapatra B, Dhal N K, Pradhan A, et al. Application of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: a mini-review. Materials Today: Proceedings, 2020,30:283-288.
[45]   Groudev S N, Spasova I I, Georgiev P S. In situ bioremediation of soils contaminated with radioactive elements and toxic heavy metals. International Journal of Mineral Processing, 2001,62(1-4):301-308.
[46]   Sajayan A, Kiran G S, Priyadharshini S, et al. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay. Environmental Pollution, 2017,228:118-127.
doi: 10.1016/j.envpol.2017.05.020 pmid: 28527323
[47]   Faheem M, Shabbir S, Zhao J, et al. Enhanced adsorptive bioremediation of heavy metals (Cd2+, Cr6+, Pb2+) by methane-oxidizing epipelon . Microorganisms, 2020,8(4):505.
[48]   赵国屏. 合成生物学:开启生命科学“会聚”研究新时代. 中国科学院院刊, 2018,33(11):1135-1149.
[48]   Zhao G P. Synthetic biology: unsealing the convergence era of life science research. Bulletin of the Chinese Academy of Sciences, 2018,33(11):1135-1149.
[49]   Endy D. Foundations for engineering biology. Nature, 2005,438(7067):449-453.
[50]   刘立中, 白阳, 郑海, 等. 合成生物学在基础生命科学研究中的应用. 生物工程学报, 2017,33(3):315-323.
[50]   Liu L Z, Bai Y, Zheng H, et al. Fundamental aspects of synthetic biology. Chinese Journal of Biotechnology, 2017,33(3):315-323.
[51]   张先恩. 中国合成生物学发展回顾与展望. 中国科学:生命科学, 2019,49(12):1543-1572.
[51]   Zhang X E. Synthetic biology in China: review and prospects. Scientia Sinica Vitae, 2019,49(12):1543-1572.
[52]   Bradley R W, Buck M, Wang B J. Tools and principles for microbial gene circuit engineering. Journal of Molecular Biology, 2016,428(5 Pt B):862-888.
pmid: 26463592
[53]   Marien M. 10 emerging technologies that will change your world. Engineering Management Review IEEE, 2004,32(2):20.
[54]   Liu P L, Huang Q Y, Chen W L. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils. Environmental Pollution, 2012,164:66-72.
pmid: 22336732
[55]   Kuroda K, Shibasaki S, Ueda M, et al. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Applied Microbiology and Biotechnology, 2001,57(5-6):697-701.
[56]   Biondo R, Da Silva F A, Vicente E J, et al. Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. Environmental Science & Technology, 2012,46(15):8325-8332.
[57]   Li H, Cong Y, Lin J, et al. Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase. Journal of Basic Microbiology, 2015,55(3):398-405.
doi: 10.1002/jobm.201300670 pmid: 25727053
[58]   Tang X, Zeng G M, Fan C Z, et al. Chromosomal expression of CadR on Pseudomonas aeruginosa for the removal of Cd (II) from aqueous solutions. The Science of the Total Environment, 2018,636:1355-1361.
[59]   Wei W, Liu X Z, Sun P Q, et al. Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon. Environmental Science and Technology, 2014,48(6):3363-3371.
pmid: 24564581
[60]   Yin K, Lv M, Wang Q N, et al. Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Research, 2016,103:383-390.
pmid: 27486950
[61]   Branda S S, Vik S, Friedman L, et al. Biofilms: the matrix revisited. Trends in Microbiology, 2005,13(1):20-26.
[62]   Ma L Y, Wang J, Wang S W, et al. Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environmental Microbiology, 2012,14(8):1995-2005.
[63]   Stoodley P, Sauer K, Davies D G, et al. Biofilms as complex differentiated communities. Annual Review of Microbiology, 2002,56(1):187-209.
[64]   刘伟杰, 刘聪, 蒋继宏. 枯草芽孢杆菌形成生物被膜的研究进展. 微生物学报, 2014,54(9):977-983.
[64]   Liu W J, Liu C, Jiang J H. Research progress on biofilm formation by Bacillus subtilis- a review. Acta Microbiologica Sinica, 2014,54(9):977-983.
[65]   Flemming H C, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 2016,14(9):563-575.
pmid: 27510863
[66]   Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microbial Cell Factories, 2016,15(1):165.
[67]   Karadag D, Köroğlu O E, OzkayA B, et al. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater . Process Biochemistry, 2015,50(2):262-271.
[68]   Biswas K, Taylor M W, Turner S J. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater. Applied Microbiology and Biotechnology, 2014,98(3):1429-1440.
doi: 10.1007/s00253-013-5082-8 pmid: 23838795
[69]   Liu C, Wang K, Jiang J H, et al. A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochemical Engineering Journal, 2015,93:166-172.
[70]   Nguyen P, Botyanszki Z, Tay P, et al. Programmable biofilm-based materials from engineered curli nanofibres. Nature Communications, 2014,5:4945.
doi: 10.1038/ncomms5945 pmid: 25229329
[71]   Chen A, Deng Z, Billings A, et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials, 2014,13(5):515-523.
[72]   Wang X Y, Pu J H, An B L, et al. Programming cells for dynamic assembly of inorganic nano-objects with spatiotemporal control. Advanced Materials, 2018,30(16):e1705968.
[73]   Cao Y X, Feng Y Y, Ryser M D, et al. Programmable assembly of pressure sensors using pattern-forming bacteria. Nature Biotechnology, 2017,35(11):1087-1093.
[74]   Jiang L, Song X, Li Y, et al. Programming integrative extracellular and intracellular biocatalysis for rapid, robust, and recyclable synthesis of trehalose. ACS Catalysis, 2018,8(3):1837-1842.
[75]   Huang J F, Liu S, Zhang C, et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nature Chemical Biology, 2019,15(1):34-41.
pmid: 30510190
[76]   Guine V, Spadini L, Sarret G, et al. Zinc sorption to three gram-negative bacteria: combined titration, modeling and EXAFS study. Environmental Science & Technology, 2006,40(6):1806-1813.
[77]   Fang L C, Huang Q Y, Wei X, et al. Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS) minerals and their composites. Bioresource Technology, 2010,101(15):5774-5779.
pmid: 20227874
[78]   Fang L C, Wei X, Cai P, et al. Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and pseudomonas putida. Bioresource Technology, 2011,102(2):1137-1141.
pmid: 20869870
[79]   Zeng X X, Tang J X, Liu X D, et al. Response of P. aeruginosa E1 gene expression to cadmium stress. Current Microbiology, 2012,65(6):799-804.
pmid: 22996729
[80]   Karimpour M, Ashrafi S D, Taghavi K, et al. Adsorption of cadmium and lead onto live and dead cell mass of Pseudomonas aeruginosa: a dataset. Data in Brief, 2018,18:1185-1192.
[81]   Mangwani N, Shukla S K, Rao T S, et al. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids and Surfaces B: Biointerfaces, 2014,114:301-309.
pmid: 24216621
[82]   Chakraborty J, Das S. Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environmental Science and Pollution Research International, 2014,21(24):14188-14201.
pmid: 25056746
[83]   Yu Q, Mishra B, Fein J. Role of bacterial cell surface sulfhydryl sites in cadmium detoxification by Pseudomonas putida. Journal of Hazardous Materials, 2020,391:122209.
doi: 10.1016/j.jhazmat.2020.122209 pmid: 32036314
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[5] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[6] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[7] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[8] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[9] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[10] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[11] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[12] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[13] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[14] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[15] Hua-ling XIE,Dong-qiao LI,Pei-juan CHI,Yan-ping YANG. An Analysis on the Competition of Patents in Synthetic Biology[J]. China Biotechnology, 2019, 39(4): 114-123.