Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (6): 45-49    DOI: 10.13523/j.cb.2102016
    
Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms
MA Qiao-ni1,WANG Meng1,**(),ZHU Xing-quan2,**()
1 State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences,Lanzhou 730046, China
2 College of Veterinary, Shanxi Agricultural University, Taigu 030801, China
Download: HTML   PDF(446KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The establishment of rapid diagnostic methods for pathogens is of great significance for the prevention and control of animal epidemics and public health safety in China. Recombinase-aided amplification (RAA) is a novel isothermal amplification technology in which rapid amplification of DNA or RNA can be carried out at low temperatures, and the entire RAA reaction is simple, rapid, accurate, power-saving and convenient. There are three core substances of this technology, including recombinase, single-stranded DNA binding protein and DNA polymerase, which can replace the traditional PCR thermal cycle chain decomposition process. Therefore, the RAA technology will play a more and more important role in the detection of pathogenic microorganisms. The research advances in the detection of pathogens by the RAA technology was reviewed, which may provide reference for further relevant studies.



Key wordsRecombinase-aided amplification (RAA)      Pathogenic microorganisms      Diagnosis      Detection     
Received: 15 February 2021      Published: 06 July 2021
ZTFLH:  Q819  
Corresponding Authors: Meng WANG,Xing-quan ZHU     E-mail: wangmeng02@caas.cn;xingquanzhu1@hotmail.com
Cite this article:

MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms. China Biotechnology, 2021, 41(6): 45-49.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2102016     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I6/45

[1]   Abedi A S, Hashempour-Baltork F, Alizadeh A M, et al. The prevalence of Brucella spp. in dairy products in the Middle East region: a systematic review and meta-analysis. Acta Tropica, 2020, 202:105241.
doi: 10.1016/j.actatropica.2019.105241
[2]   Fisher C R, Streicker D G, Schnell M J. The spread and evolution of rabies virus: conquering new frontiers. Nature Reviews Microbiology, 2018, 16(4):241-255.
doi: 10.1038/nrmicro.2018.11
[3]   Elsheikha H M, Marra C M, Zhu X Q. Epidemiology, pathophysiology, diagnosis, and management of cerebral toxoplasmosis. Clinical Microbiology Reviews, 2020, 34(1). DOI: 10.1128/cmr.00115-19.
[4]   Lee C Y P, Lin R T P, Renia L, et al. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Frontiers in Immunology, 2020, 11:879.
doi: 10.3389/fimmu.2020.00879
[5]   Umesha S, Manukumar H M. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Critical Reviews in Food Science and Nutrition, 2018, 58(1):84-104.
doi: 10.1080/10408398.2015.1126701 pmid: 26745757
[6]   Yan L, Zhou J, Zheng Y, et al. Isothermal amplified detection of DNA and RNA. Molecular BioSystems, 2014, 10(5):970-1003.
doi: 10.1039/c3mb70304e
[7]   吕蓓, 程海荣, 严庆丰, 等. 用重组酶介导扩增技术快速扩增核酸. 中国科学: 生命科学, 2010, 40(10):983-988.
[7]   Lü B, Cheng H R, Yan Q F, et al. Recombinase-aid amplification: a novel technology of in vitro rapid nucleic acid amplification . Scientia Sinica (Vitae), 2010, 40(10):983-988.
[8]   Jaroenram W, Owens L. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectiousPenaeus stylirostris densovirus and virus-related sequences in shrimp genome. Journal of Virological Methods, 2014, 208:144-151.
doi: 10.1016/j.jviromet.2014.08.006 pmid: 25152528
[9]   Dumètre A, Dardé M L. How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiology Reviews, 2003, 27(5):651-661.
doi: 10.1016/S0168-6445(03)00071-8
[10]   王瑞欢, 张益, 向星宇, 等. 3型腺病毒免提取核酸重组酶介导的等温扩增实时荧光检测方法的建立及应用. 中华实验和临床病毒学杂志, 2019, 33(6):653-657.
[10]   Wang R H, Zhang Y, Xiang X Y, et al. Development and evaluation of real-time fluorescence recombinase aided amplification assay without extracting nucleic acid for detection of adenovirus type 3. Chinese Journal of Experimental and Clinical Virology, 2019, 33(6):653-657.
[11]   吕蓓, 程海荣, 严庆丰, 等. 体外核酸快速扩增技术的发展和不断创新. 中国生物工程杂志, 2011, 31(3):91-96.
[11]   Lv B, Cheng H R, Yan Q F, et al. The development and recent improvements of in vitro nucleic acid amplification technology . China Biotechnology, 2011, 31(3):91-96.
[12]   Chen C, Li X N, Li G X, et al. Use of a rapid reverse-transcription recombinase aided amplification assay for respiratory syncytial virus detection. Diagnostic Microbiology and Infectious Disease, 2018, 90(2):90-95.
doi: S0732-8893(17)30316-4 pmid: 29141771
[13]   Xiong Y F, Luo Y S, Li H, et al. Rapid visual detection of dengue virus by combining reverse transcription recombinase-aided amplification with lateral-flow dipstick assay. International Journal of Infectious Diseases, 2020, 95:406-412.
doi: 10.1016/j.ijid.2020.03.075
[14]   Hille F, Richter H, Wong S P, et al. The biology of CRISPR-cas: backward and forward. Cell, 2018, 172(6):1239-1259.
doi: 10.1016/j.cell.2017.11.032
[15]   Gootenberg J S, Abudayyeh O O, Lee J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336):438-442.
doi: 10.1126/science.aam9321
[16]   Myhrvold C, Freije C A, Gootenberg J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360(6387):444-448.
[17]   Chen J S, Ma E B, Harrington L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387):436-439.
doi: 10.1126/science.aar6245
[18]   Bai J, Lin H S, Li H J, et al. Cas12a-based on-site and rapid nucleic acid detection of African swine fever. Frontiers in Microbiology, 2019, 10:2830.
doi: 10.3389/fmicb.2019.02830
[19]   葛以跃, 苏璇, 张倩, 等. CRISPR-Cas13a结合重组酶介导的扩增快速检测副溶血性弧菌方法的建立. 现代预防医学, 2019, 46(20):3777-3781.
[19]   Ge Y Y, Su X, Zhang Q, et al. Rapid detection of Vibrio parahaemolyticus by CRISPR-Cas13a combined with recombinase aided amplification(RAA) . Modern Preventive Medicine, 2019, 46(20):3777-3781.
[20]   Zhang X P, Guo L C, Ma R R, et al. Rapid detection of Salmonella with recombinase aided amplification. Journal of Microbiological Methods, 2017, 139:202-204.
doi: 10.1016/j.mimet.2017.06.011
[21]   Shen X X, Qiu F Z, Shen L P, et al. A rapid and sensitive recombinase aided amplification assay to detect hepatitis B virus without DNA extraction. BMC Infectious Diseases, 2019, 19(1):229.
doi: 10.1186/s12879-019-3814-9
[22]   郑伟, 王刚, 杨永耀, 等. 重组酶介导恒温扩增技术检测疟原虫方法的建立? 寄生虫与医学昆虫学报, 2016, 23(1):15-20.
[22]   Zheng W, Wang G, Yang Y Y, et al. A recombinase aided amplification assay for Plasmodium . Acta Parasitologica et Medica Entomologica Sinica, 2016, 23(1):15-20.
[23]   Duan S X, Li G X, Li X N, et al. A probe directed recombinase amplification assay for detection of MTHFR A1298C polymorphism associated with congenital heart disease. BioTechniques, 2018, 64(5):211-217.
doi: 10.2144/btn-2018-2010
[24]   廖萍, 刘茶珍, 朱佩云, 等. 重组酶介导扩增技术与传统聚合酶链反应技术在甲状腺癌DNA甲基化检测中的应用比较. 中国医药, 2013, 8(6):797-799.
[24]   Liao P, Liu C Z, Zhu P Y, et al. Comparison of recombinase-aid amplification and traditional polymerase chain reaction in DNA methylation detection of thyroid cancer. China Medicine, 2013, 8(6):797-799.
[25]   Yin Y B, Zhou D G. Organoid and enteroid modeling of Salmonella infection. Frontiers in Cellular and Infection Microbiology, 2018, 8:102.
doi: 10.3389/fcimb.2018.00102
[26]   Crump J A, Sj?lund-Karlsson M, Gordon M A, et al. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clinical Microbiology Reviews, 2015, 28(4):901-937.
doi: 10.1128/CMR.00002-15 pmid: 26180063
[27]   Chen N S, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 2020, 395(10223):507-513.
doi: 10.1016/S0140-6736(20)30211-7
[28]   Yin Y D, Wunderink R G. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology (Carlton, Vic), 2018, 23(2):130-137.
[29]   Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England Journal of Medicine, 2003, 348(20):1967-1976.
doi: 10.1056/NEJMoa030747
[30]   Zaki A M, van Boheemen S, Bestebroer T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England Journal of Medicine, 2012, 367(19):1814-1820.
doi: 10.1056/NEJMoa1211721 pmid: 23075143
[31]   Huang C L, Wang Y M, Li X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 2020, 395(10223):497-506.
doi: 10.1016/S0140-6736(20)30183-5
[32]   Xue G H, Li S L, Zhang W W, et al. Reverse-transcription recombinase-aided amplification assay for rapid detection of the 2019 novel coronavirus (SARS-CoV-2). Analytical Chemistry, 2020, 92(14):9699-9705.
doi: 10.1021/acs.analchem.0c01032
[33]   Demiraslan H, Dinc G, Doganay M. An overwiev of ORF virus infection in humans and animals. Recent Patents on Anti- Infective Drug Discovery, 2017, 12(1):21-30.
[34]   Wang Y, Cui Y Q, Yu Z R, et al. Development of a recombinase-aided amplification assay for detection of orf virus. Journal of Virological Methods, 2020, 280:113861.
doi: 10.1016/j.jviromet.2020.113861
[35]   Garcia L S. Malaria. Clinics in Laboratory Medicine, 2010, 30(1):93-129.
doi: 10.1016/j.cll.2009.10.001 pmid: 20513543
[36]   赵松, 刘燕红, 叶钰滢, 等. 基于重组酶介导核酸等温扩增反应的曼氏血吸虫基因检测方法的建立. 中国血吸虫病防治杂志, 2020, 32(4):335-339,344.
[36]   Zhao S, Liu Y H, Ye Y Y, et al. Establishment of the gene detection method of Schistosoma mansoni based on the recombinase-aided isothermal amplification assay . Chinese Journal of Schistosomiasis Control, 2020, 32(4):335-339,344.
[1] LI Shuai-peng,REN He,AN Zhan-fei,YANG Yan-kun,BAI Zhong-hu. The Development of Chemiluminescence Immunoassay Detection Method for Thrombomodulin[J]. China Biotechnology, 2021, 41(4): 30-36.
[2] ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong,GE Sheng-xiang. Advances in Single Molecule Immunoassay[J]. China Biotechnology, 2021, 41(4): 47-54.
[3] SHI Zhong-lin,CUI Jun-sheng,YANG Ke,HU An-zhong,LI Ya-nan,LIU Yong,DNEG Guo-qing,ZHU Can-can,ZHU Ling. Research Progress in Isothermal Amplification of Nucleic Acid Based on Microfluidic Chip[J]. China Biotechnology, 2021, 41(2/3): 116-128.
[4] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[5] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[6] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[7] HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR[J]. China Biotechnology, 2020, 40(7): 82-90.
[8] SUN Heng,WANG Jing,ZENG Ling-gao,WANG Jian-hua. Application of Peptide Nucleic Acid in Virus Detection and Therapy[J]. China Biotechnology, 2020, 40(1-2): 146-153.
[9] ZHAO Ping,YANG Yan-ping. Patent Situation Analysis of Diagnosis Technology for Coronavirus Infection in Human[J]. China Biotechnology, 2020, 40(1-2): 51-56.
[10] MEI Ya-xian,WANG Yue,LUO Wen-xin. Application of Nano-antibody in the Prevention, Diagnosis and Treatment of Infectious Diseases[J]. China Biotechnology, 2020, 40(10): 24-34.
[11] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[12] Si-nan QIN,Lu-hua TANG,Wen-hui GAO. Preparation of Enrofloxacin Molecular Imprinting Electro- chemical Sensor and Its Application to Rapid Detection of Foods[J]. China Biotechnology, 2019, 39(3): 65-74.
[13] Lin YANG,Yong-chao LI,Teng-hua ZHANG,Yi-xiao DENG,Jin YANG,Zhi-bo GAO. Comprehensive Evaluation is needed for Precision Diagnosis in Cancer Immunotherapies[J]. China Biotechnology, 2019, 39(2): 62-73.
[14] Zhou TONG,Jing-hua YAN. Progress in Non-structural Protein 1 (NS1) Based Diagnosis of Flaviviruses Infection[J]. China Biotechnology, 2019, 39(2): 82-89.
[15] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.