Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (10): 86-92    DOI: 10.13523/j.cb.20171012
    
CRISPR/Cas9 System:A Recent Progress
LI Xiao-fei, CAO Ying-xiu, SONG Hao
School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering(Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin University, Tianjin 300072, China
Download: HTML   PDF(557KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The development of CRISPR/Cas9 system has revolutionized our ability to edit DNA and to modulate expression levels of target genes, thus providing powerful tools to accelerate the precise genome engineering of a wide range of organisms. The developed CRISPR/Cas9 system consists of the Cas9 protein and a programmed sgRNA. The Cas9 protein binds to the Cas9 handle of sgRNA and forms a Cas9-sgRNA complex. Then, the Cas9-sgRNA complex binds to specific DNA targets by Watson-Crick base pairing between the sgRNA and the DNA target, and the DNA will be cleaved due to the nuclease activity of the Cas9 protein. Compared with the traditional genome editing technologies, CRISPR/Cas9 system has several obvious advantages, inculding ease of use, simplicity, low cost, programmed and multiple genes editing. CRISPR/Cas9 genome editing technology and the derived CRISPRi and CRISPRa gene expression regulation techniques have been widely used in a variety of eukaryotic and prokaryotic organisms. Here, the origin and mechanism of CRISPR/Cas9 system, its application in organisms and its derived technology were reviewed, and its off-target effect and future prospects were outlined.

Key wordsCRISPR/Cas9      CRISPRi CRISPRa      Genome editing      Gene expression regulation     
Received: 12 May 2017      Published: 25 October 2017
ZTFLH:  Q789  
Cite this article:

LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress. China Biotechnology, 2017, 37(10): 86-92.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171012     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I10/86

[1]   Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213):1258096.
[2]   Charpentier E, Marraffini L A. Harnessing CRISPR-Cas9 immunity for genetic engineering. Current Opinion in Microbiology, 2014, 19(7):114-119.
[3]   Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482(7385):331-338.
[4]   Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology, 2017, 15(3):169-182.
[5]   Perez-Pinera P, Kocak D D, Vockley C M, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods, 2013, 10(10):973-976.
[6]   Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5):1173-1183.
[7]   Maeder M L, Linder S J, Cascio V M, et al. CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 2013, 10(10):977-979.
[8]   Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2):442-451.
[9]   Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4):347-355.
[10]   Chavez A, Scheiman J, Vora S, et al. Highly efficient Cas9-mediated transcriptional programming. Nature Methods, 2015, 12(4):326-328.
[11]   Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12):5429-5433.
[12]   Mojica F J, Díez-Villaseñor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Molecular Microbiology, 2000, 36(1):244-246.
[13]   Mojica F J, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 2005, 60(2):174-182.
[14]   Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(3):653-663.
[15]   Bolotin A, Quinquis B, Sorokin A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 151(8):2551-2561.
[16]   Makarova K S, Grishin N V, Shabalina S A, et al. A putative RNA-interference-based immune system in prokaryotes:computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 2006, 1(1):7.
[17]   Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819):1709-1712.
[18]   Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909):1843-1845.
[19]   Brouns S J, Jore M M, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891):960-964.
[20]   Lander E S. The heroes of CRISPR. Cell, 2016, 164(1):18-28.
[21]   Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9(6):467-477.
[22]   Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011, 471(7340):602-607.
[23]   Wang J, Li J, Zhao H, et al. Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 2015, 163(4):840-853.
[24]   Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 2012, 109(39):E2579-E2586.
[25]   Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096):816-821.
[26]   Shuman S, Glickman M S. Bacterial DNA repair by non-homologous end joining. Nature Reviews Microbiology, 2007, 5(11):852-861.
[27]   Cui L, Bikard D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Research, 2016, 44(9):4243-4251.
[28]   Li D, Qiu Z, Shao Y, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8):681-683.
[29]   Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121):819-823.
[30]   DiCarlo J E, Norville J E, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41(7):4336-4343.
[31]   Li W, Teng F, Li T, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8):684-686.
[32]   Gratz S J, Cummings A M, Nguyen J N, et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 2013, 194(4):1029-1035.
[33]   Wang H, Yang H, Shivalila C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4):910-918.
[34]   Shalem O, Sanjana N E, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nature Reviews Genetics, 2015, 16(5):299-311.
[35]   Jiang W, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3):233-239.
[36]   Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015, 16(2):142-147.
[37]   Jo Y I, Suresh B, Kim H, et al. CRISPR/Cas9 system as an innovative genetic engineering tool:Enhancements in sequence specificity and delivery methods. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2015, 1856(2):234-243.
[38]   Mali P, Esvelt K M, Church G M. Cas9 as a versatile tool for engineering biology. Nature Methods, 2013, 10(10):957-963.
[39]   Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(3):230-232.
[40]   Ain Q U, Chung J Y, Kim Y H. Current and future delivery systems for engineered nucleases:ZFN, TALEN and PGEN. Journal of Controlled Release, 2015,205(5):120-127.
[41]   Wong A S, Choi G C, Cui C H, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proceedings of the National Academy of Sciences, 2016, 113(9):2544-2549.
[42]   Ding Q, Lee Y K, Schaefer E A, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell, 2013, 12(2):238-251.
[43]   Mail P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
[44]   Kim H, Kim J S. A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 2014, 15(5):321-334.
[45]   Hawking J S, Wong S, Peters J M, et al. Targeted transcriptional repression in bacteria using CRISPR interference(CRISPRi). CRISPR:Methods and protocols, 2015,1311(9):349-362.
[46]   Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121):823-826.
[47]   Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 2016, 533(7601):125-129.
[48]   Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 2016, 34(1):78-83.
[49]   Hawkins J S, Wong S, Peters J M, et al. Targeted transcriptional repression in bacteria using CRISPR interference(CRISPRi). CRISPR:Methods and Protocols,2015,1311(9):349-362.
[50]   Crook N C, Schmitz A C, Alper H S. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synthetic Biology, 2013, 3(5):307-313.
[51]   Choudhary E, Thakur P, Pareek M, et al. Gene silencing by CRISPR interference in mycobacteria. Nature Communications, 2015,6(2):6267.
[52]   Larson M H, Gilbert L A, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2013, 8(11):2180-2196.
[53]   Bikard D, Jiang W, Samai P, et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 2013, 41(15):7429-7437.
[54]   Juhas M, Eberl L, Church G M. Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends in Biotechnology, 2012, 30(11):601-607.
[55]   Ji W, Lee D, Wong E, et al. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synthetic Biology, 2014, 3(12):929-931.
[56]   Farzadfard F, Perli S D, Lu T K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synthetic Biology, 2013,2(10):604-613.
[57]   Cobb R E, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synthetic Biology, 2014, 4(6):723-728.
[58]   Mimee M, Tucker A C, Voigt C A, et al. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Systems, 2015, 1(1):62-71.
[59]   Konermann S, Brigham M D, Trevino A E, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015, 517(7536):583-588.
[60]   Farzadfard F, Perli S D, Lu T K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synthetic Biology, 2013, 2(10):604-613.
[61]   Dominguez A A, Lim W A, Qi L S. Beyond editing:repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 2016, 17(1):5-15.
[62]   Pattanayak V, Lin S, Guilinger J P, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 2013, 31(9):839-843.
[63]   Jackson R N, Golden S M, van Erp P B, et al. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science, 2014, 345(6203):1473-1479.
[64]   Doench J G, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34(2):184-191.
[65]   Tsai S Q, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 2014, 32(6):569-576.
[66]   Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32(6):577-582.
[67]   Kleinstiver B P, Pattanayak V, Prew M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587):490-495.
[68]   Tycko J, Myer V E, Hsu P D. Methods for optimizing CRISPR-Cas9 genome editing specificity. Molecular Cell, 2016, 63(3):355-370.
[69]   Jiang F, Doudna J A. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 2017, 46(1):505-529.
[70]   Jiang W, Marraffini L A. CRISPR-Cas:new tools for genetic manipulations from bacterial immunity systems. Annual Review of Microbiology, 2015, 69:209-228.
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[5] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[6] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[7] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[8] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[9] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[10] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[11] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[12] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[13] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[14] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[15] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.