Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (06): 135-141    DOI:
    
Metabolic Engineering of L-tryptophan via Microbiological Fermentation
ZHAO Zhi-jun1,2, CHEN Sheng1,2, WU Dan1,2, WU Jing1,2, CHEN Jian1,2
1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
2. School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(599KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

L-tryptophan (L-Trp) is widely used in food, animal feed and pharmaceutical industries as an essential amino acid for humans. Chemical synthesis, enzymatic/microbial conversion and microbial fermentation are the methods for industrial production of L-Trp. Recently, with successful application of metabolic engineering in strain improvement, microbial fermentation gradually becomes the major method of L-Trp production. The strategy of metabolic engineering for improving L-Trp production is reviewed, involving the regulatory mechanism and genetic modification of L-Trp biosynthesis. Furthermore, the prospect of L-Trp production is also discussed.



Key wordsL-tryptophan      Metabolic engineering      Microbial fermentation     
Received: 20 December 2010      Published: 28 June 2011
ZTFLH:  Q819  
Cite this article:

ZHAO Zhi-jun, CHEN Sheng, WU Dan, WU Jing, CHEN Jian. Metabolic Engineering of L-tryptophan via Microbiological Fermentation. China Biotechnology, 2011, 31(06): 135-141.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I06/135

[1] Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Applied Microbiology and Biotechnology, 2005, 69(1): 1-8.
[2] Snyder H, MacDonald J. A synthesis of tryptophan and tryptophan analogs1. Journal of the American Chemical Society, 1955, 77(5): 1257-1259.
[3] 韦和平, 吴梧桐. 以L-半胱氨酸和吲哚酶法合成L-色氨酸. 药用生物技术, 2000, 7(4): 197-199. Wei H P, Wu W T. Pharmaceutical Biotechnology, 2000, 7(4):197-199.
[4] 张素珍, 刘英昊. 用北京鼓棒杆菌细胞转化生产L-色氨酸. 微生物学报, 1993, 33(1): 69-73. Zhang S Z, Liu Y H. Acta Microbiologica Sinica, 1993, 33(1): 69-73.
[5] Azuma S, Tsunekawa H, Okabe M, et al. Hyper-production of L-trytophan via fermentation with crystallization. Applied Microbiology and Biotechnology, 1993, 39(4): 471-476.
[6] Ikeda M, Katsumata R. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Applied and Environmental Microbiology, 1999, 65(6): 2497.
[7] Dodge T, Gerstner J. Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E. coli. Journal of Chemical Technology & Biotechnology, 2002, 77(11): 1238-1245.
[8] Dehghan Shasaltaneh M, Fooladi J, Moosavi-Nejad S Z. L-tryptophan production by Escherichia coli in the presence of Iranian cane molasses. Journal of Paramedical Sciences, 2010, 1(2): 20-25.
[9] Bongaerts J, Kramer M, Muller U, et al. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metabolic Engineering, 2001, 3(4): 289-300.
[10] Ikeda M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Applied Microbiology and Biotechnology, 2006, 69(6): 615-626.
[11] Sugimoto S, Shiio I. Enzymes of the tryptophan synthetic pathway in Brevibacterium flavun. Journal of Biochemistry, 1977, 81(4): 823.
[12] Yanofsky C, Horn V, Gollnick P. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. Journal of Bacteriology, 1991, 173(19): 6009.
[13] Wehrmann A, Morakkabati S, Krmer R, et al. Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid transporter. Journal of Bacteriology, 1995, 177(20): 5991.
[14] Katsumata R, Ikeda M. Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Nature Biotechnology, 1993, 11(8): 921-925.
[15] Jossek R, Bongaerts J, Sprenger G. Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase AroF of Escherichia coli. FEMS Microbiology Letters, 2001, 202(1): 145-148.
[16] Kikuchi Y, Tsujimoto K, Kurahashi O. Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Applied and Environmental Microbiology, 1997, 63(2): 761.
[17] Caligiuri M, Bauerle R. Subunit communication in the anthranilate synthase complex from Salmonella typhimurium. Science, 1991, 252(5014): 1845.
[18] 李剑欣. 大肠杆菌色氨酸生物合成分支途径调控研究. 北京: 军事医学院科学院, 放射医学研究所, 2007. Li J X. Study on the Regulation of Branch Metabolic Pathway in Tryptophan Biosynthesis of Escherichia coli. Beijing: Academy of Military Medical Science, Institute of Radiation Medicine, 2007.
[19] Hagino H, Nakayama K. Regulatory properties of anthranilate synthetase from Corynebacterium glutamicum. Agricultural and Biological Chemistry, 1975, 39(2): 323-330.
[20] Ikeda M, Nakanishi K, Kino K, et al. Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Bioscience, Biotechnology, and Biochemistry, 1994, 58(4): 674.
[21] 陈俊峰, 苏丽娜, 王璋, 等. 从土壤中分离 L-色氨酸生产菌株及其高产诱变选育的研究. 食品与发酵工业, 2007, 33(7): 37-41. Chen J F, Su L N, Wang Z, et al. Food and Fermentation Industries, 2007, 33(7): 37-41.
[22] Sabnis N, Yang H, Romeo T. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. Journal of Biological Chemistry, 1995, 270(49): 29096.
[23] Floras N, Xiao J, Berry A, et al. Pathway engineering for the production of aromatic compounds in Escherichia coli. Nature Biotechnology, 1996, 14(5): 620-623.
[24] Gosset G, Yong-Xiao J, Berry A. A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 1996, 17(1): 47-52.
[25] Liao J, CHAO Y, Patnaik R. Alteration of the biochemical valves in the central metabolism of Escherichia coli. Annals of the New York Academy of Sciences, 1994, 745(1): 21-34.
[26] Patnaik R, Liao J. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Applied and Environmental Microbiology, 1994, 60(11): 3903.
[27] 王静, 于金龙, 张婷, 等. 大肠杆菌生物合成中心代谢途径的改造及其对工程菌色氨酸产量的影响. 中国医药生物技术, 2008, 3(2): 93-97. Wang J, Yu J L, Zhang T, et al. Chinese Medicinal Biotechnology, 2008, 3(2): 93-97.
[28] Doroshenko V, Airich L, Vitushkina M, et al. YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiology Letters, 2007. 275(2): 312-318.
[29] Ikeda M, Katsumata R. Tryptophan production by transport mutants of Corynebacterium glutamicum. Bioscience, Biotechnology, and Biochemistry, 1995, 59(8): 1600-1602.
[30] Li K, Mikola M, Draths K, et al. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli. Biotechnol Bioeng, 1999, 64(1): 61-73.
[31] Martínez K, De Anda R, Hernández G, et al. Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact, 2008, 7(1): 1.
[32] Chandran S S, Yi J, Draths K M, et al. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog, 2003, 19(3): 808-814.
[33] Ahn Jo, Lee H, Saha R, et al. Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions. Journal of Microbiology and Biotechnology, 2008, 18(11): 1773.
[34] Escalante A, Calderón R, Valdivia A, et al. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact, 2010, 9: 21.
[35] Balderas-Hernandez V E, Sabido-Ramos A, Silva P, et al. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact, 2009, 8: 19.
[36] Lee K H, Park J H, Kim T Y, et al. Systems metabolic engineering of Escherichia coli for L-threonine production. Molecular Systems Biology, 2007, 3:149.
[37] Park J, Lee K, Kim T, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proceedings of the National Academy of Sciences, 2007, 104(19): 7797.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] LI Yuan-yuan,LI Yan,CAO Ying-xiu,SONG Hao. Research and Strategies of Flavins-mediated Extracellular Electron Transfer[J]. China Biotechnology, 2021, 41(10): 89-99.
[4] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[5] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[6] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[7] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[8] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[9] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[10] GAO Jiao-jiao, YANG Shu-lin. Advances in the Production of High Molecular Weight Hyaluronic Acid by Microbial Fermentation[J]. China Biotechnology, 2017, 37(5): 118-125.
[11] YU Xiao-chun, MA Shi-liang. Advances in Research of Aspergillus oryzae as a Host of Heterologous Protein Expression[J]. China Biotechnology, 2016, 36(9): 94-100.
[12] LI Xiao-bo, LIU Xue, ZHAO Guang-rong. Advances on Flavonoid Glycosides Production of Engineered Microorganisms[J]. China Biotechnology, 2016, 36(8): 105-112.
[13] GAO Cui-juan, LIN Carol Sze-ki, QI Qing-sheng. Production of Medium-chain-length Polyhydroxyalkanoates by Recombinant Yarrowia lipolytica Through Metabolic Engineering[J]. China Biotechnology, 2016, 36(5): 53-58.
[14] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[15] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.