Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (5): 35-44    DOI: 10.13523/j.cb.2103001
技术与方法     
利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*
王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明()
天津科技大学生物工程学院 工业发酵微生物教育部重点实验室 天津市工业微生物重点实验室 天津 300457
CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain
WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming()
Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
 全文: PDF(2320 KB)   HTML
摘要:

我国果胶酶制剂使用广泛但专一性不高,高效、专一的果胶酶制剂在市场上仍然匮乏。利用基因工程技术改造果胶酶生产菌株——黑曲霉来生产单一成分的果胶酶成为解决果胶酶应用需求的一种有效方案。构建一种高效的CRISPR-Cas9基因编辑技术,可为构建高产单一性果胶酶的黑曲霉底盘菌株提供有效的基因编辑工具。首先敲除产果胶酶黑曲霉基因组上的pyrG基因构建尿嘧啶营养缺陷型菌株AnΔpyrG,并在AnΔpyrG菌株的pyrG基因位点定点整合Cas9基因表达盒和pyrG基因表达盒,构建组成型表达Cas9基因的黑曲霉菌株AnCas9,再构建含有gpdA启动子、锤头结构核酶、HDV核酶的稳定性表达sgRNA的pLM2-sgRNA质粒,建立CRISPR-Cas9基因编辑体系。利用该技术失活AnCas9菌株中的2个聚半乳糖醛酸酶基因4978020和4983861来检测构建的CRISPR-Cas9基因编辑效率并检测4978020基因功能缺失菌株的表型变化和产酶变化,结果表明果胶酶基因编辑效率大于50%,AnΔ4978020的表型和果胶酶酶活性与出发菌株均无明显变化。在黑曲霉中成功构建了高效的Cas9基因编辑技术,4978020基因功能缺失也不影响菌株表型,为构建高产单一性果胶酶黑曲霉底盘菌株奠定基础。

关键词: CRISPR-Cas9技术果胶酶基因编辑黑曲霉    
Abstract:

Pectinase preparations have been widely used in China. However, efficient and specific pectinases are still lacking in the market. Producing a single-component pectinase using modified Aspergillus niger by genetic engineering technology has become an effective solution to meet the growing industrial demand of pectinase. Constructing an efficient CRISPR-Cas9 technology can provide an efficient genome editing tool for the construction of Aspergillus niger chassis strain with high yield single pectinase. First, the pyrG gene on the genome of pectinase-producing Aspergillus niger was knocked out to construct the uracil auxotrophic strain AnΔpyrG, and the Cas9 expression cassette and pyrG expression cassette were integrated precisely at the pyrG site of the AnΔpyrG strain to construct AnCas9 strain constitutively expressing the Cas9 gene. Then, the pLM2-sgRNA plasmid which contained the gpdA promoter, hammerhead ribozyme, and HDV ribozymes for the efficient expression and maturation of sgRNA was constructed. And finally, the CRISPR-Cas9 gene editing system is successfully established. The 4978020 and the 4983861 gene were used to detect the gene editing efficiency of the constructed CRISPR-Cas9 system, and the phenotypic changes and enzyme production changes of the 4978020 gene function deletion strain were detected. The results showed that the pectinase gene editing efficiency is more than 50%, the phenotype and pectinase activity of the strain AnΔ4978020 had no significant changes compared with the original strain. An efficiency CRISPR-Cas9 system was successfully constructed in Aspergillus niger producing pectinase, and losing of the 4978020 gene function did not affect the phenotype of the strain, which laid the foundation for the construction of high yield single pectinase Aspergillus niger chassis strain.

Key words: CRISPR/Cas9 technology    Pectinase    Gene edition    Aspergillus niger
收稿日期: 2021-03-01 出版日期: 2021-06-01
ZTFLH:  Q812  
基金资助: * 国家自然科学基金面上项目(32072161)
通讯作者: 黎明     E-mail: liming09@tust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王艳梅
寇航
马梅
申玉玉
赵宝顶
路福平
黎明

引用本文:

王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.

WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain. China Biotechnology, 2021, 41(5): 35-44.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103001        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I5/35

Primer name Primer sequence (5'-3') Restriction sites
KOpyrG-Left-F GGGGTACCAGTGTGATGACTTCACCATGGAGGT Kpn
KOpyrG-Left-R1 CATTGAACATTGTCCTTGGTACGGTATTGATCCTGCAGGCTACT
KOpyrG-Right-F1 GCCTGCAGGATCAATACCGTACCAAGGACAATGTTCAATGTCGAC
KOpyrG-Right- R GGAATTCTCTCCGGATGTTGAATGGCAAC EcoRⅠ
SgGpdAF GAAGATCTGCGTAAGCTCCCTAATTGGC Bgl
SgTrpR AGGCGCGCCGAAGGCGCGCCA Asc
4978020F1 AAGCTCGTCCGTCTCCGAGTTCGCTAAGAGTTTTAGAGCTAGAAATAGCAAGTTAAAAT
4978020F2 GAGACGCTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGTCCGTCTCCGAGTTCG
4983861F1 AAGCTCGTCTAGCTTCTGCGCCACCTTCAGT
TTTAGAGCTAGAAATAGCAAGTTAAAAT
4983861F2 AAGCTACTGATGAGTCCGTGAGGACGAAACG
AGTAAGCTCGTCTAGCTTCTGCGCC
表1  本研究所用的引物
图1  黑曲霉pyrG基因敲除过程示意图
图2  AnCas9整合菌株的构建示意图
图3  pLM2-sgRNA及sgRNA表达盒构建示意图
Hygromycin B 5-FOA
Concentration
/(μg/mL)
Growth Concentration
/(mg/mL)
Growth
40 ++++ 0.5 ++++
80 +++ 1 +++
120 ++ 1.5 ++
160 - 2 -
200 - 2.5 -
表2  潮霉素B和5-FOA最低抑制浓度
图4  核酸电泳图和质粒图
图5  4978020和4983861基因转化子靶序列比对
图6  AnΔ4978020和WT菌株表型
图7  AnΔ4978020和 WT菌株产果胶酶活性比较
[1] Mohnen D. Pectin structure and biosynthesis. Current Opinion in Plant Biology, 2008,11(3):266-277.
doi: 10.1016/j.pbi.2008.03.006
[2] Lara-Márquez A, Zavala-Páramo M G, López-Romer E, et al. Biotechnological potential of pectinolytic complexes of fungi. Biotechnology Letters, 2011,33(5):859-868.
doi: 10.1007/s10529-011-0520-0 pmid: 21246254
[3] Willats W G T, McCartney L, Mackie W, et al. Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 2001,47(1-2):9-27.
doi: 10.1023/A:1010662911148
[4] 傅海, 赵佳, 李伟, 等. 果胶酶研究进展及应用. 生物化工, 2020,6(5):148-150,153.
Fu H, Zhao J, Li W, et al. Research progress and application of pectinase. Biological Chemical Engineering, 2020,6(5):148-150,153.
[5] Alkorta I, Garbisu C, Llama M J, et al. Industrial applications of pectic enzymes: a review. Process Biochemistry, 1998,33(1):21-28.
doi: 10.1016/S0032-9592(97)00046-0
[6] Mieszczakowska-Frᶏc M, Markowski J, Zbrzeźniak J, et al. Impact of enzyme on quality of blackcurrant and plum juices. LWT - Food Science and Technology, 2012,49(2):251-256.
doi: 10.1016/j.lwt.2011.12.034
[7] Wang W D, Xu S Y, Jin M K. Effects of different maceration enzymes on yield, clarity and anthocyanin and other polyphenol contents in blackberry juice. International Journal of Food Science & Technology, 2009,44(12):2342-2349.
[8] Kohli P, Gupta R. Alkaline pectinases: a review. Biocatalysis and Agricultural Biotechnology, 2015,4(3):279-285.
doi: 10.1016/j.bcab.2015.07.001
[9] Saoudi B, Habbeche A, Kerouaz B, et al. Purification and characterization of a new thermoalkaliphilic pectate lyase from Actinomadura keratinilytica Cpt20. Process Biochemistry, 2015,50(12):2259-2266.
doi: 10.1016/j.procbio.2015.10.006
[10] Hoondal G, Tiwari R, Tewari R, et al. Microbial alkaline pectinases and their industrial applications: a review. Applied Microbiology and Biotechnology, 2002,59(4-5):409-418.
doi: 10.1007/s00253-002-1061-1
[11] Wang X W, Lu Z H, Xu T, et al. Improving the specific activity and thermo-stability of alkaline pectate lyase from Bacillus subtilis 168 for bioscouring. Biochemical Engineering Journal, 2018,129:74-83.
doi: 10.1016/j.bej.2017.11.001
[12] Barman S, Sit N, Badwaik L S, et al. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. Journal of Food Science and Technology, 2015,52(6):3579-3589.
[13] Mrudula S, Anitharaj R. Pectinase production in solid state fermentation by Aspergillus niger using orange peel as substrate. 2011
[14] Ann Ran F, Hsu P D, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013,8(11):2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 24157548
[15] Schuster M, Kahmann R. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genetics and Biology, 2019,130:43-53.
doi: 10.1016/j.fgb.2019.04.016
[16] Nødvig C S, Nielsen J B, Kogle M E, et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One, 2015,10(7):e0133085.
doi: 10.1371/journal.pone.0133085
[17] Pohl C, Kiel J A K W, Driessen A J M, et al. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synthetic Biology, 2016,5(7):754-764.
doi: 10.1021/acssynbio.6b00082 pmid: 27072635
[18] Platt R J. CRISPR tool modifies genes precisely by copying RNA into the genome. Nature, 2019,576(7785):48-49.
doi: 10.1038/d41586-019-03392-9
[19] Shi T Q, Gao J, Wang W J, et al. CRISPR/Cas9-based genome editing in the filamentous fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production. ACS Synthetic Biology, 2019,8(2):445-454.
doi: 10.1021/acssynbio.8b00478
[20] Yang Y J, Singh R P, Lan X, et al. Genome editing in model strain Myxococcus xanthus DK1622 by a site-specific cre/loxP recombination system. Biomolecules, 2018,8(4):E137.
[21] 李红花, 刘钢. CRISPR/Cas9在丝状真菌基因组编辑中的应用. 遗传, 2017,39(5):355-367.
Li H H, Liu G. The application of CRISPR/Cas9 in genome editing of filamentous fungi. Hereditas, 2017,39(5):355-367.
[22] Michielse C B, Hooykaas P J J, van den Hondel C A M J J, et al. Agrobacterium -mediated transformation of the filamentous fungus Aspergillus awamori. Nature Protocols, 2008,3(10):1671-1678.
doi: 10.1038/nprot.2008.154 pmid: 18833205
[23] Sandri I G, Fontana R C, Moura da Silveira M. Influence of pH and temperature on the production of polygalacturonases by Aspergillus fumigatus. LWT - Food Science and Technology, 2015,61(2):430-436.
doi: 10.1016/j.lwt.2014.12.004
[24] Michielse C B, Hooykaas P J J, Hondel C A M J J, et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 2005,48(1):1-17.
doi: 10.1007/s00294-005-0578-0
[25] Weyda I, Yang L, Vang J, et al. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. Journal of Microbiological Methods, 2017,135:26-34.
doi: 10.1016/j.mimet.2017.01.015
[26] Kamijo J, Sakai K, Suzuki H, et al. Identification and characterization of a thermostable pectate lyase from Aspergillus luchuensis var. saitoi. Food Chemistry, 2019,276:503-510.
doi: S0308-8146(18)31824-7 pmid: 30409626
[27] Wang Q, Coleman J J. Progress and challenges: development and implementation of CRISPR/Cas9 technology in filamentous fungi. Computational and Structural Biotechnology Journal, 2019,17:761-769.
doi: 10.1016/j.csbj.2019.06.007
[1] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[2] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[3] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[4] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[5] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[6] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[7] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[8] 杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.
[9] 徐然,陈松. CRISPR/Cas9运输系统的研究进展及其在基因相关疾病方面的应用 *[J]. 中国生物工程杂志, 2018, 38(3): 81-88.
[10] 许丽, 王玥, 姚驰远, 徐萍. 基因编辑技术发展态势分析与建议*[J]. 中国生物工程杂志, 2018, 38(12): 113-122.
[11] 任爽, 朱鸿亮. Taqman定量PCR技术检测基因编辑番茄中外源基因拷贝数体系的建立[J]. 中国生物工程杂志, 2017, 37(10): 72-80.
[12] 王利群, 鲁洪中, 储炬, 王永红. 不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响[J]. 中国生物工程杂志, 2017, 37(1): 27-37.
[13] 阿力玛, 高原, 苏小虎, 周欢敏. CRISPR/Cas9编辑绒山羊FGF5基因细胞株的建立[J]. 中国生物工程杂志, 2016, 36(7): 41-47.
[14] 堵晶晶, 李强, 程霄, 沈林園, 李学伟, 张顺华, 朱砺. CRISPR/Cas系统的研究进展及其在畜禽遗传改良中的应用前景[J]. 中国生物工程杂志, 2016, 36(7): 92-103.
[15] 朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.