Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (1): 27-37    DOI: 10.13523/j.cb.20170105
研究报告     
不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响
王利群, 鲁洪中, 储炬, 王永红
华东理工大学 生物反应器工程国家重点实验室 上海 200237
Dissolved Carbon Dioxide Effects on Glucoamylase Synthesis of Aspergillus niger in Batch and Chemostat Cultures
WANG Li-qun, LU Hong-zhong, CHU Ju, WANG Yong-hong
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(1328 KB)   HTML
摘要:

通过在进气中混入部分CO2气体,在分批培养和恒化培养两种培养方式下研究了不同dCO2水平对黑曲霉产糖化酶的影响。在分批培养方式下,较高的dCO2对细胞的生长具有抑制作用,并且随着dCO2水平的增加,抑制程度加强,但是较高浓度的dCO2对糖化酶的合成有利。而恒化培养时,低稀释率D1=0.05/h下,较高的dCO2对细胞的生长并没有明显的抑制作用,但有利于糖化酶合成。高稀释率D2=0.08/h下,较高的dCO2对细胞的生长有明显的抑制作用,并且抑制程度随着dCO2水平的增加而加大。以上实验结果表明,dCO2对细胞生长和糖化酶合成的影响不仅和dCO2水平有关,也和培养方式及细胞所处的特定代谢状态有关。这对于黑曲霉产糖化酶工业放大过程中补料分批发酵中比生长速率的设计具有很好的指导作用。

关键词: 黑曲霉糖化酶生长抑制CO2胁迫    
Abstract:

The effect of different levels of elevated dissolved CO2 availability(CO2 stress) was investigated in batch and chemostat cultures of Aspergillus niger by gassing with CO2-enriched air. Under batch cultures, higher elevated dissolved CO2 availability in culture medium resulted in a more significant decrease in specific growth rate, whereas it appeared to have a positive effect on glucoamylase synthesis. Under chemostat cultures with low dilution rate (D1=0.05/h), high levels of dissolved CO2 led to no reduction of specific growth rate, but an increase of glucoamylase production. Whereas at high dilution rate (D2=0.08/h), both substrate uptake and cell grow were more severely inhibited by more elevated dissolved CO2. The effect of elevated dissolved CO2 availability on the fermentation process depends on CO2 levels as well as dilution rate. Therefore, the influence of carbon dioxide on cell growth and glucoamylase production dependent on CO2 levels, cultivation mode and specific metabolic activity, which would be helpful for the design of specific growth rate in scale-up of glucoamylase fermentation by Aspergillus niger.

Key words: Aspergillus niger    Glucoamylase    Growth repression    CO2 stress
收稿日期: 2016-10-25 出版日期: 2017-01-25
ZTFLH:  Q815  
基金资助:

国家“973”计划(2013CB733600),国家国际科技合作专项(2013DFG32630)资助项目

通讯作者: 王利群     E-mail: lqwang2013@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王利群, 鲁洪中, 储炬, 王永红. 不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响[J]. 中国生物工程杂志, 2017, 37(1): 27-37.

WANG Li-qun, LU Hong-zhong, CHU Ju, WANG Yong-hong. Dissolved Carbon Dioxide Effects on Glucoamylase Synthesis of Aspergillus niger in Batch and Chemostat Cultures. China Biotechnology, 2017, 37(1): 27-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170105        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I1/27

[1] 郭艳梅,郑平,孙继宾. 黑曲霉作为细胞工厂——知识准备与技术基础. 生物工程学报,2010, 26(10):1410-1418. Guo Y M, Zheng P, Sun J B. Aspergillus niger as a potential cellular factory:prior knowledge and key technology. Chinese Journal of Biotechnology, 2010, 26(10):1410-1418.
[2] Melzer G, Dalpiaz A, Grote A, et al. Metabolic flux analysis using stoichiometric models for Aspergillus niger:comparison under glucoamylase-producing and non-producing conditions. Journal of Biotechnology, 2007, 132(4):405-417.
[3] Marin N J, Polaina J. Glucoamylases:structural and biotechnological aspects. Applied Microbiology and Biotechnology, 2011, 89(5):1267-1273.
[4] Mhairi M, Brian M. Effects of elevated dissolved CO2 levels on batch and continuous cultures of Aspergillus niger A60:an evaluation of experimental methods. Aplied and Environmental Microbiology,1997, 63(11):4171-4177.
[5] Song H, Lee J W, Choi S, et al. Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production. Biotechnology and Bioengineering, 2007, 98(6):1296-1304.
[6] Gros J.B., Dussap C.G., Catté M. Estimation of O2 and CO2 solubility in microbial culture madia. Biotechnology Progress, 1999, 15(5):923-927.
[7] 赵凯,徐鹏举,谷光烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究. 食品科学, 2008, 29(8):3-7. Zhao K, Xu. P. J, Gu G Y. Study on determination of reducing sugar content using 3,5-dinitrosalicylic acid method. Food Science, 2008, 29(8):534-536.
[8] Youngquist J T, Lennen R M, Ranatunga D R, et al. Kinetic modeling of free fatty acid production in Escherichia coli based on continuous cultivation of a plasmid free strain. Biotechnology and Bioengineering, 2012, 109(6):1518-1527.
[9] Mcintyre M, Mcneil B. Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme and Microbial Technology, 1997, 20(2):135-142.
[10] Mcintyre M, Mcneil B. Effect of carbon dioxide on morphology and product synthesis in chemostat cultures of Aspergillus niger A60. Enzyme and Microbial Technology, 1997, 21(7):479-483.
[11] El-Sabbagh N, Mcneil B, Harvey L M. Dissolved carbon dioxide effects on growth, nutrient consumption, penicillin synthesis and morphology in batch cultures of Penicillium chrysogenum. Enzyme and Microbial Technology, 2006, 39(2):185-190.
[12] Lu S, Eiteman M A, Altman E. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. Journal of Biotechnology, 2009, 143(3):213-223.
[13] Richard L, Guillouet S E, Uribelarrea J L. Quantification of the transient and long-term response of Saccharomyces cerevisiae to carbon dioxide stresses of various intensities. Process Biochemistry, 2014, 49(11):1808-1818.
[14] Aguilera J, Petit T, De Winde J H, et al. Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations. FEMS Yeast Research, 2005, 5(6-7):579-593.
[15] Yusaku F, Hiroshi M. Improved glucoamylase production by Rhizo-pus sp.A11 using metal-ion supplemented liquid medium. Journal of Fermentation and Bioengineering, 1996, 82(6):554-557.

[1] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 施慧琳, 孙靖淳, 张荣凯, 高大启, 王泽建, 郭美锦, 周礼勤, 庄英萍. 电子嗅在线反馈控制毕赤酵母糖化酶发酵过程中甲醇浓度新方法的应用[J]. 中国生物工程杂志, 2016, 36(3): 68-76.
[4] 李尤简, 张国奇, 郭吉星, 陈新凯, 豆晓霞, 陈创夫, 盛金良. 绵羊肌肉生长抑制素MSTN原核表达及其纳米抗体文库的构建与鉴定[J]. 中国生物工程杂志, 2014, 34(9): 87-93.
[5] 赵晶, 吕慧, 贾依娜古丽·朱玛拜, 孙素荣. 骆驼蓬脂转移蛋白基因真核表达载体的构建及其体内外抗瘤效应的研究[J]. 中国生物工程杂志, 2014, 34(8): 7-13.
[6] 陈香粉, 鲁洪中, 唐文俊, 唐寅, 储炬, 庄英萍, 张嗣良. 基于比速率及代谢流的黑曲霉突变株和野生株分析[J]. 中国生物工程杂志, 2014, 34(8): 35-40.
[7] 李刚锐, 李林俐, 范翔, 孟延发. 溶胶凝胶法固定化黑曲霉脂肪酶的性质研究[J]. 中国生物工程杂志, 2014, 34(4): 78-84.
[8] 李瑞瑞, 刘佃磊, 杨晴, 郝琼, 姜凯凯, 李丕武. 响应面法优化黑曲霉产葡萄糖氧化酶的发酵条件[J]. 中国生物工程杂志, 2013, 33(10): 111-116.
[9] 黎明, 刘萌, 黄云雁, 周丽颖, 孙昕, 路福平. 根癌农杆菌介导的黑曲霉遗传转化体系的建立及优化[J]. 中国生物工程杂志, 2012, 32(01): 56-63.
[10] 黄文, 杨洪江, 秦慧彬. 黑曲霉纤维素酶突变子T-DNA插入位点的遗传分析及性质鉴定[J]. 中国生物工程杂志, 2011, 31(04): 60-64.
[11] 秦慧彬, 杨洪江, 黄文, 李玲艳. 强启动子glaA介导cbhB基因在黑曲霉中的表达[J]. 中国生物工程杂志, 2010, 30(11): 34-38.
[12] 曹泽虹,董玉玮,苗敬芝,吕兆启. 黑曲霉生产菊粉酶工艺条件的研究[J]. 中国生物工程杂志, 2009, 29(08): 97-101.
[13] 黄小凤, 韦宇拓, 韦传东, 杜丽琴, 庞宗文, 黄日波. 单宁酶基因在黑曲霉ST31中的克隆与表达[J]. 中国生物工程杂志, 2005, 25(9): 74-77.
[14] 曲音波; 高培基; 陈嘉川. 制浆造纸用木聚糖酶的研究进展[J]. 中国生物工程杂志, 1998, 18(6): 35-39.
[15] 冯德荣. 生物传感器的开发和应用进展[J]. 中国生物工程杂志, 1996, 16(3): 13-15.