Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (10): 79-85    DOI: 10.13523/j.cb.20161011
CRISPR专栏     
CRISPR-Cas9系统在疾病模型中的应用
朱少义1, 管丽红1,2, 林俊堂1,2
1 新乡医学院生命科学技术学院 新乡 453003;
2 河南省医用组织再生重点实验室 新乡 453003
CRISPR-Cas9 System and Its Applications in Disease Models
ZHU Shao-yi1, GUAN Li-hong1,2, LIN Jun-tang1,2
1. College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China;
2. Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
 全文: PDF(579 KB)   HTML
摘要:

规律成簇间隔短回文重复(CRISPR)及相关核酸内切酶(Cas)系统是最近发现的一种关于RNA指导核酸内切酶的基因编辑技术,这一技术的发现促进了生物学和医学研究的发展。CRISPR-Cas9系统的简便性使其广泛应用于细胞基因组编辑、动物模型的构建及疾病模型的基因治疗。现就CRISPR-Cas9系统的结构特点、作用机制及应用进行了综述。

关键词: 基因治疗基因编辑动物模型CRISPR-Cas9    
Abstract:

Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) is a gene editing technique of which RNA guiding endonuclease to cleavage genome. The discovery of this technology promoted biological and medicinal studies. This simplicity of the CRISPR-Cas9 system has enabled its widespread applications in cell genome editing, animal models generation and gene therapy of disease models. The structure characteristics, mechanism and applications of CRISPR-Cas9 system were focused on.

Key words: Animal model    Genome editing    Gene therapy    CRISPR-Cas9
收稿日期: 2016-06-14 出版日期: 2016-10-25
ZTFLH:  Q789  
基金资助:

国家自然科学基金(81600987)、河南省高校科技创新人才计划(16A180014;14HASTTT032)、河南省高等学校重点科研项目(16A180013)资助项目

通讯作者: 管丽红,电子信箱:lhguan2010@163.com;林俊堂,电子信箱:linjtlin@126.com     E-mail: lhguan2010@163.com;linjtlin@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.

ZHU Shao-yi, GUAN Li-hong, LIN Jun-tang. CRISPR-Cas9 System and Its Applications in Disease Models. China Biotechnology, 2016, 36(10): 79-85.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161011        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I10/79

[1] Mak T W. Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell, 2007, 131(6): 1027-1031.
[2] Gaj T, Gersbach C A, Barbas C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31(7): 397-405.
[3] Bassett A R, Tibbit C, Ponting C P, et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas system. Cell Rep, 2013, 4(1): 220-228.
[4] Yu Z, Ren M, Wang Z, et al. Highly efficient genome modifications mediated by CRISPR/Cas in Drosophila. Genetics, 2013, 195(1): 289-291.
[5] 韩勇, 杨杰, 李子彬,等. 新型基因组编辑技术研究进展. 动物医学进展, 2015, 36(10): 100-105. Han Y, Yang J, Li Z B, et al. Progress on novel genome editing technologies. Progress in Veterinary Medicine, 2015, 36(10): 100-105.
[6] 杨发誉, 葛香连, 谷峰. 新型靶向基因座编辑技术研究进展. 中国生物工程杂志, 2014, 34(2): 98-103. Yang F Y, Ge X L, Gu F. Progress of next-generation targeted gene-editing techniques.China Biotechnol, 2014, 34(2): 98-103.
[7] Makarova K S, Wolf Y I, Koonin E V, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015, 13(11): 722-736.
[8] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkalin phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987, 169(12): 5429-5433.
[9] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
[10] Fonfara I, Richter H, Bratovi? M, et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 2016, 532(7600): 517-521.
[11] 刘莹, 郑鹏生, 张忠明. CRISPR系统结构及功能的研究. 医学分子生物学杂志, 2014,11(4): 297-302. Liu Y, Zheng P S, Zhang Z M. Structure and function of CRISPR system.Med Mol Biol, 2014,11(4): 297-302.
[12] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8(1):1-10.
[13] Brouns S J, Jore M M, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891): 960-964.
[14] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602-607.
[15] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
[16] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012, 109(39): 2579-2586.
[17] 沈阳坤, 郑志泉, 蔡少丽. CRISPR/Cas系统在疾病模型和基因治疗中的应用. 中国生物化学和分子生物学报, 2015, 31(8): 786-794. Shen Y K, Zheng Z Q, Cai S L. The application of CRISPR/Cas9 system in disease models and gene therapy.Chin J Biochem Mol Biol, 2015, 31(8): 786-794.
[18] 卢利沙, 白杨, 刘鑫等. 利用CRISPR/Cas9技术构建敲除MEIS2基因的HEK293T人胚肾细胞系. 中国细胞生物学学报, 2015, 37(4): 535-541. Lu L S, Bai Y, Liu X. Construction of MEIS2 knockout HEK293T cell line by CRISPR/Cas9 technology.Chinese Journal of Cell Biology, 2015, 37(4): 535-541.
[19] Wiktor J, Lesterlin C, Sherratt D J, et al. CRISPR-mediated control of the bacterial initiation of replication. Nucleic Acids Res, 2016, 44(8): 3801-3810.
[20] Zimmer C T, Garrood W T, Puinean A M, et al. A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster. Insect Biochem Mol Biol, 2016, 24(73): 62-69.
[21] Jao L E, Wente S R, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A, 2013, 110(34): 13904-13909.
[22] Rauch I, Tenthorey J L, Nichols R D, et al. NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. J Exp Med, 2016, 213(5): 657-665.
[23] Ding Q, Regan S N, Xia Y, et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 2013, 12(4): 393-394.
[24] Schwank G, Koo B K, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 2013, 13(6): 653-658.
[25] Xie F, Ye L, Chang J C, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res, 2014, 24(9): 1526-1533.
[26] 胡袁, 张婷, 姜长安. 运用改良的CRISPR/Cas9系统建立HtrA2敲除细胞株. 中国细胞生物学学报, 2014, 36(12): 1644-1648. Hu Y, Zhang T, Jiang C A. Nockout cell line with an improved CRISPR/Cas9 systerm.Chinese Journal of Cell Biology, 2014, 36(12): 1644-1648.
[27] Hwang W Y, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 2013, 31(3): 227-229.
[28] Chang N, Sun C, Gao L, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 2013, 23(4): 465-472.
[29] Mizuno S,Dinh T T, Kato K, et al. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system. Mamm Genome, 2014, 25(7-8): 327-334.
[30] 马元武, 马婧, 路迎冬, 等. 利用CRISPR/Cas9敲除大鼠胰岛素受体底物1(Irs1)基因. 中国比较医学杂志, 2014, 24(3): 55-60. Ma Y W, Ma J, Lu Y D, et al. Generating insulin receptor substrate 1 (Irs1) knockout rat using CRISPR/Cas9.Chin J Comp Med, 2014, 24(3): 55-60.
[31] 周庭友, 孙中义, 张勇, 等. 鼠fscb基因靶向敲除载体的构建及动物模型的建立.第三军医大学学报, 2015, 37(15): 1527-1533. Zhou T Y, Sun Z Y, Zhang Y, et al. Construction of targeting vector and preparation of sheath CABYR-binding protein knockout mice using CRISPR/Cas9 system. Third Mil Univ, 2015, 37(15): 1527-1533.
[32] Wang K, Ouyang H. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep, 2015, 5: 16623.
[33] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
[34] Li W, Teng F, Li T, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol, 2013, 31(8): 684-686.
[35] Wang H, Yang H, Shivalila C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4): 910-918.
[36] Friedmann T, Roblin R. Gene therapy for human genetic disease. Science, 1972, 175(4025): 949-955.
[37] Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013, 13(6): 659-662.
[38] Yin H, Xue W. Chen S, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 2014, 32(6): 551-553.
[39] Long C, McAnally J R, Shelton J M, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science, 2014, 345(6201): 1184-1188.
[40] Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol, 2016, 34(3): 334-338.
[41] Park C Y, Kim D H, Son J S, et al. Functional correction of large factor Ⅷ gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell, 2015, 17(2): 213-220.
[42] 季海燕, 朱焕章. 基因编辑技术在基因治疗中的应用进展. 生命科学, 2015, 27(1): 0071-0082. Ji H Y, Zhu H Z. Progress of genome editing approaches towards gene therapy.Chinese Bulletin of Life Sciences, 2015, 27(1): 0071-0082.
[43] Ramanan V, Shlomai A, Cox D B, et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep, 2015, 5: 10833.
[44] Ye L, Wang J M, Beyer A I, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A, 2014, 111(26): 9591-9596.
[45] Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep, 2013, 3(8): 2510-2510.
[46] Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A, 2014, 111(31): 11461-11466.
[47] Wilkinson R, Wiedenheft B. A CRISPR method for genome engineering. F1000Prime Rep, 2014, 6(6): 3-3.
[48] Gao F, Shen X Z, Jiang F, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol, 2016, doi: 10.1038/nbt.3547.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[3] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[6] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[7] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[8] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[9] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[10] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[11] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[12] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[13] 杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.
[14] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[15] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.