Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (11): 1-9    DOI: 10.13523/j.cb.2007018
研究报告     
乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*
何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云()
华东理工大学药学院 上海市新药设计重点实验室 上海 200237
CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion
HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun()
School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(28087 KB)   HTML
摘要:

目的:乳腺癌细胞的恶性增殖和易于侵袭转移特性与其对患者的危害直接相关,因此,探究其产生的分子机制,对其有效防治具有重要意义。静息巯基氧化酶-1(QSOX1)是巯基氧化酶家族成员之一,有研究证明其对细胞内蛋白质折叠过程中二硫键形成及细胞外基质的形成发挥重要作用。由于QSOX1在乳腺癌和胰腺癌等多种癌细胞中过表达,将探索QSOX1对乳腺癌细胞过度增殖和侵袭转移方面的可能作用。方法:通过利用CRISPR/Cas9技术构建QSOX1基因敲除和敲入的乳腺癌细胞模型,检测分析QSOX1对乳腺癌细胞MCF-7的分裂增殖、侵袭迁移能力等方面的影响。结果:利用CRISPR/Cas9基因编辑技术成功构建了QSOX1基因敲除和敲入的乳腺癌MCF-7细胞株,其与对照野生型组细胞相比,QSOX1基因敲除株的增殖能力显著下降,癌细胞在体外的迁移和侵袭能力受到明显抑制;而QSOX1基因敲入株的增殖能力和体外迁移侵袭能力却明显有提高。结论:初步揭示了QSOX1在癌症发生与发展中的作用,为进一步阐明其作用的分子机制和设计靶向药物奠定了重要基础。

关键词: 静息巯基氧化酶-1(QSOX1)乳腺癌MCF-7细胞增殖和侵袭能力CRISPR/Cas9基因编辑    
Abstract:

Objective: The malignant proliferation and easy invasion and metastasis of breast cancer cells are directly related to their harm to patients. Therefore, it is of great significance to explore the molecular mechanism of breast cancer cells for their effective prevention and treatment. QSOX1 is one of the members of thiol oxidase family. It has been proved that QSOX1 plays an important role in the formation of disulfide bond and extracellular matrix during protein folding. QSOX1 is over expressed in many kinds of cancer cells, including breast cancer and pancreatic cancer. The present study explored the possible role of QSOX1 in breast cancer cell proliferation, invasion and metastasis. Methods: By using CRISPR/Cas9 technology to construct QSOX1 gene knock-out and knock-in models of breast cancer cells, the effects of QSOX1 on the proliferation, invasion and migration of MCF-7 cells were analyzed. Results: The results showed that QSOX1 gene knock-out and knock-in MCF-7 cell lines were successfully constructed by CRISPR/Cas9 gene editing technology. Compared with WT cells, the proliferation ability of QSOX1 KO1 cells decreased significantly, the migration and invasion of cancer cells in vitro were significantly inhibited. However, the proliferation, migration and invasion capabilities of QSOX1 KI cells have been significantly improved. Conclusion: The study initially reveals the role of QSOX1 in the occurrence and development of cancer, and lays an important foundation for further elucidation of its molecular mechanism and design of targeted drugs.

Key words: QSOX1    MCF-7 cells    Proliferation and invasion    CRISPR /Cas9
收稿日期: 2020-07-13 出版日期: 2020-12-11
ZTFLH:  Q789  
基金资助: * 青年科学基金(81673345);国家自然科学基金面上项目(31670944);上海市科技创新项目(17431904600)
通讯作者: 郑文云     E-mail: zwy@ecust.edu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何秀娟
胡凤枝
刘秋丽
刘玉萍
祝玲
郑文云

引用本文:

何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.

HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion. China Biotechnology, 2020, 40(11): 1-9.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2007018        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I11/1

图1  靶向QSOX1基因的sgRNA的设计
sgRNA 序列(5'-3')
QSOX1-sgRNA1 F1: CACCGACCTGCCCACTTCTATCCGC
R1: AAACGCGGATAGAAGTGGGCAGGTC
QSOX1-sgRNA2 F2: CACCGGGAGCTATCTTGTTAGCAG
R2: AAACCTGCTAACAAGATAGCTCCC
QSOX1-sgRNA3 F3: CACCGTAAGCGGTATAGAAGGACC
R3: AAACGGTCCTTCTATACCGCTTAC
表1  QSOX1-sgRNA寡核苷酸序列
图3  pX459-QSOX1-sgRNA介导外源表达盒整合到MCF-7特定基因位点原理图
Prime Sequence(5'-3') The product of PCR
sgRNA1/2-F TCCAGAGCATGTGCAGTGAT 533bp
sgRNA1/2-R AAATGCCGCTCCCACACATT
SgRNA3-F GGCCTGGAGAGAAAACTCC 622bp
sgRNA3-R AGGCTGGAGGGTATCACCTAT
表2  引物序列
图2  pX459-QSOX1-sgRN重组质粒测序结果
图4  T7E1酶切鉴定突变体
图5  QSOX1基因敲除和敲入稳定细胞株的建立和鉴定
图6  QSOX1基因敲除和敲入对MCF-7细胞增殖的影响
图7  QSOX1基因敲除和敲入对MCF-7细胞迁移和侵袭能力的影响
[1] Alakesh B, Eric R, Muthu S, et al. Proteomic analysis of inflammatory biomarkers associated with breast cancer recurrence. Military Medicine, 2020,185:669-675.
doi: 10.1093/milmed/usz254 pmid: 32074342
[2] Rodgers K M, Udesky J O, Rudel R A, et al. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ Res, 2018,160:152-182.
doi: 10.1016/j.envres.2017.08.045 pmid: 28987728
[3] Teegarden D, Romieu I, Lelièvre S A, et al. Redefining the impact of nutrition on breast cancer incidence: is epigenetics involved? Nutrition Research Reviews, 2012,25(1):68-95.
doi: 10.1017/S0954422411000199 pmid: 22853843
[4] Wong G S, Rustgi A K. Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. British Journal of Cancer, 2013,108(4):755-761.
doi: 10.1038/bjc.2012.592 pmid: 23322204
[5] Box C, Rogers S J, Mendiola M, et al. Tumour-microenvironmental interactions: paths to progression and targets for treatment. Seminars in Cancer Biology, 2010,20(3):128-138.
[6] Kim S H, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol, 2011,209(2):139-151.
[7] Ostrowski M C, Kistler W S. Properties of a flavoprotein sulfhydryl oxidase from rat seminal vesicle secretion. Biochemistry, 1980,19(12):2639-2645.
doi: 10.1021/bi00553a016 pmid: 7397095
[8] Rudolf J, Pringle M A, Bulleid N J. Proteolytic processing of QSOX1A ensures efficient secretion of a potent disulfide catalyst. Biochemical Journal, 2013,454(2):181-190.
[9] Thorpe C, Hoober K L, Raje S, et al. Sulfhydryl oxidases: Emerging catalysts of protein disulfide bond formation in eukaryotes. Archives of Biochemistry & Biophysics, 2002,405(1):1-12.
doi: 10.1016/s0003-9861(02)00337-5 pmid: 12176051
[10] Alon A, Heckler E J, Thorpe C, et al. QSOX contains a pseudo-dimer of functional and degenerate sulfhydryl oxidase domains. Febs Letters, 2010,584(8):1521-1525.
[11] Morel C, Adami P, Musard J F, et al. Involvement of sulfhydryl oxidase qsox1 in the protection of cells against oxidative stress-induced apoptosis. Experimental Cell Research, 2007,313(19):3971-3982.
doi: 10.1016/j.yexcr.2007.09.003 pmid: 17927979
[12] Katchman B A, Ocal I T, Cunliffe H E, et al. Expression of quiescin sulfhydryl oxidase 1 is associated with a highly invasive phenotype and correlates with a poor prognosis in Luminal B breast cancer. Breast Cancer Research, 2013,15(2):R28-R43.
doi: 10.1186/bcr3407 pmid: 23536962
[13] Katchman B A, Antwi K, Hostetter G, et al. Quiescin sulfhydryl oxidase 1 promotes invasion of pancreatic tumor cells mediated by matrix metalloproteinases. Molecular Cancer Research Mcr, 2011,9(12):1621-1631.
doi: 10.1158/1541-7786.MCR-11-0018 pmid: 21989104
[14] Coppock D L, Thorpe C. Multidomain flavin-dependent sulfhydryl oxidases. Antioxidants & Redox Signaling, 2006,8(3-4):300-311.
doi: 10.1089/ars.2006.8.300 pmid: 16677076
[15] Soloviev M, Esteves M P, Amiri F, et al. Elevated transcription of the gene qsox1 encoding quiescin q6 sulfhydryl oxidase 1 in breast cancer. PLoS One, 2013,8(2):1-11.
[16] Pernodet N, Hermetet F, Adami P, et al. High expression of QSOX1 reduces tumorogenesis, and is associated with a better outcome for breast cancer patients. Breast Cancer Research, 2012,14(5):1-15.
[17] Padmalaya D, Gabrielle M S, Lyme-Marie P, et al. Illuminating luminal B: QSOX1 as a subtype-specific biomarker. Breast Cancer Research, 2013,15(3):104.
[18] Heckler E J, Alon A, Fass D, et al. Human quiescin-sulfhydryl oxidase, qsox1: Probing internal redox steps by mutagenesis. Biochemistry, 2008,47(17):4955-4963.
doi: 10.1021/bi702522q pmid: 18393449
[19] Knutsvik G, Collett K, Arnes J, et al. QSOX1 expression is associated with aggressive tumor features and reduced survival in breast carcinomas. Mod Pathol, 2016,29(12):1485-1491.
pmid: 27562495
[20] Ilani T, Alon A, Grossman I, et al. A secreted disulfide catalyst controls extracellular matrix composition and function. Science, 2013,341(6141):74-76.
doi: 10.1126/science.1238279 pmid: 23704371
[21] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010,327(5962):167-170.
[22] Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics, 2014,23(1):R40-R46.
[23] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[24] Cho S W, Kim S, Kim J M, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013,31(3):230-232.
doi: 10.1038/nbt.2507 pmid: 23360966
[25] Lee C H, Huang C S, Chen C S, et al. Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells. Journal of the National Cancer Institute, 2010,102(17):1322-1335.
doi: 10.1093/jnci/djq300 pmid: 20733118
[26] Wright A V, Nu?ez J K, Doudna J A. Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell, 2016,164(1-2):29-44.
pmid: 26771484
[27] Rorres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9: A revolutionary tool for cancer modelling. International Journal of Molecular Sciences, 2015,16(9):22151-22168.
doi: 10.3390/ijms160922151 pmid: 26389881
[28] Lee C H, Huang C S, Chen C S, et al. Overexpression and activation of the alpha9-nicotinic receptor during tumorigenesis in human breast epithelial cells. Journal of the National Cancer Institute, 2010,102(17):1322-1335.
doi: 10.1093/jnci/djq300 pmid: 20733118
[29] Ratan Z A, Son Y J, Haidere M F. CRISPR-Cas9: a promising genetic engineering approach in cancer research. Therapeutic Advances in Medical Oncology, 2018,10:1-15.
[30] Jubair L, McMillan N A J. The Therapeutic potential of CRISPR/Cas9 systems in oncogene-addicted cancer types: Virally driven cancers as a model system. Mol Ther Nucleic Acids, 2017,8:56-63.
doi: 10.1016/j.omtn.2017.06.006 pmid: 28918056
[31] Sebolt-Leopold J S, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer, 2004,4(12):937-947.
doi: 10.1038/nrc1503 pmid: 15573115
[32] De Palma M, Biziato D, Petrova T V. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer, 2017,17(8):457-474.
doi: 10.1038/nrc.2017.51 pmid: 28706266
[33] Wang Y, Wang H, Pan T, et al. STIM1 silencing inhibits the migration and invasion of A549 cells. Mol Med Rep, 2017,16(3):3283-3289.
doi: 10.3892/mmr.2017.7010 pmid: 28713917
[34] Dong H, Diao H, Zhao Y, et al. Overexpression of matrix metalloproteinase-9 in breast cancer cell lines remarkably increases the cell malignancy largely via activation of transforming growth factor beta/SMAD signalling. Cell Proliferation, 2019,52(5):e12633.
doi: 10.1111/cpr.12633 pmid: 31264317
[35] Radisky E S, Radisky D C. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia, 2010,15(2):201-212.
doi: 10.1007/s10911-010-9177-x pmid: 20440544
[36] Zhou L, Chen H M, Qu S, et al. Reduced QSOX1 enhances radioresistance in nasopharyngeal carcinoma. Oncotarget, 2017,9(3):3230-3241.
pmid: 29423042
[37] Portes K F, Ikegami C M, Getz J, et al. Tissue distribution of quiescin Q6/sulfhydryl oxidase (QSOX) in developing mouse. J Mol Histol, 2008,39(2):217-225.
doi: 10.1007/s10735-007-9156-8 pmid: 18034316
[1] 张国强,潘薇,赵亮,庞达. eIF-4E腺病毒载体构建及对乳腺癌MCF-7细胞转移能力的影响[J]. 中国生物工程杂志, 2008, 28(3): 8-12.