Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (5): 17-26    DOI: 10.13523/j.cb.2102023
技术与方法     
不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*
胡暄1,2,王松1,于学玲2,张晓鹏2,**()
1 国防科技大学新型陶瓷纤维及其复合材料重点实验室 长沙 410073
2 军事医学研究院生物工程研究所 北京 100071
Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation
HU Xuan1,2,WANG Song1,YU Xue-ling2,ZHANG Xiao-peng2,**()
1 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China
2 Beijing Institute of Biotechnology, Academy of Military Medical Science, Beijing 100071, China
 全文: PDF(33053 KB)   HTML
摘要:

目的:为了更好地评价基因编辑效率,满足高通量筛选应用中快速、高效的检测要求,在细胞上建立一个原位检测方法具有重要的意义。通过检测荧光蛋白信号强度的变化可以评价CRISPR系统在细胞中的基因编辑情况,然而这一方法的效率受限于荧光蛋白较长的半衰期。方法:将鸟氨酸脱羧酶降解结构域(含PEST序列)与EGFP融合,通过慢病毒系统感染HEK-293T细胞,获得了表达单拷贝、EGFP-PEST报告基因的稳转细胞系。结果:与EGFP相比,EGFP-PEST在细胞内的降解速度明显加快,荧光水平在4 h内显著降低。利用该模型比较了3种商品化脂质体介导的CRISPR/Cas9基因编辑效率,能够在2~4 d实现定性和定量评价。结论:这一模型能够快速、灵敏地指示基因编辑效果,可以用于不同CRISPR系统或新递送工具的高通量筛选和评价。

关键词: 荧光蛋白单拷贝CRISPR系统细胞模型基因编辑    
Abstract:

Objective: To meet the requirements of rapid and efficient gene editing detection in high-throughput screening applications, it is of great significance to establish an in situ evaluation method on cells. EGFP can be used to evaluate the gene editing performance mediated by the CRISPR system, but the efficiency is limited by the long half-life of EGFP. Methods: A version of destabilized EGFP (EGFP-PEST) was constructed by fusing degradation domain of ornithine decarboxylase (containing PEST motif) to EGFP. The EGFP-PEST gene was introduced into the chromosome of HEK-293T cells by lentivirus, and the copy number of EGFP-PEST gene was measured by RT-qPCR. Finally, cell strains with single copy of EGFP-PEST transgene were established. Results: Compared to unmodified EGFP, the cellular fluorescence of EGFP-PEST significantly decreased within 4 h, suggesting efficient PEST-mediated protein degradation. The cell model was used to evaluate the potential of three commercial lipids to deliver CRISPR/Cas9 complex. Data showed that gene editing was detected in 2-4 days by quantitative or qualitative measurements. Conclusion: This cell model can be used in high-throughput screening for new CRISPR tools or novel delivery systems by indicating the gene editing rapidly and sensitively.

Key words: Fluorescent protein    Single copy    CRISPR system    Cell model    Gene editing
收稿日期: 2021-02-22 出版日期: 2021-06-01
ZTFLH:  Q812  
基金资助: * 国家自然科学基金(81703048)
通讯作者: 张晓鹏     E-mail: zxp8565@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡暄
王松
于学玲
张晓鹏

引用本文:

胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.

HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation. China Biotechnology, 2021, 41(5): 17-26.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2102023        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I5/17

图1  pLVX-EGFP-PEST质粒构建的原理示意图
图2  HEK-293T细胞活性与Puromycin抗性浓度的关系
图3  pLVX-EGFP-PEST质粒构建
图4  HEK-293T细胞的荧光细胞比例与感染时病毒原液体积的关系
图5  基于泊松分布模拟病毒感染细胞的数学模型
图6  绝对定量PCR 标准品扩增图谱、标准曲线拟合图和熔解曲线分析图
细胞编号 细胞基因组DNA
浓度/(ng/μL)
Ct平均值 拷贝数浓度
/(copies/μL)
拷贝数
293T-a 146 23.735 28 615 1.27
293T-b 160 23.775 27 866 1.13
293T-c 85 24.773 14 385 1.10
293T-d 60 24.883 13 374 1.44
表1  RT-qPCR方法获得的细胞EGFP-PEST基因拷贝数
图7  流式分析各细胞株的荧光表达情况
图8  EGFP-PEST(a)和EGFP(b)在CHX处理的293T细胞中的荧光信号变化
图9  jetCRISPR递送Cas9/sgRNA进293T. EGFP-PEST细胞的荧光表达
图10  RNAiMAX和Lipo2000转导Cas9/sgRNA 4 d后293T.EGFP-PEST细胞的荧光表达
[1] Tyagi S, Kumar R, Das A, et al. CRISPR-Cas9 system: a genome-editing tool with endless possibilities. Journal of Biotechnology, 2020,319:36-53.
doi: 10.1016/j.jbiotec.2020.05.008
[2] Pickar-Oliver A, Gersbach C A. The next generation of CRISPR-Cas technologies and applications. Nature Reviews Molecular Cell Biology, 2019,20(8):490-507.
doi: 10.1038/s41580-019-0131-5
[3] Khandaker I, Funderburgh J L, Geary M L, et al. A novel transgenic mouse model for corneal scar visualization. Experimental Eye Research, 2020,200:108270.
doi: S0014-4835(20)30528-5 pmid: 32979396
[4] Zhou L, Wang X Y, Du S R, et al. Germline specific expression of a vasa homologue gene in the viviparous fish black rockfish (Sebastes schlegelii) and functional analysis of the vasa 3' untranslated region. Frontiers in Cell and Developmental Biology, 2020,8:575788.
doi: 10.3389/fcell.2020.575788
[5] Lee J K, Chui J L M, Lee R C H, et al. Antiviral activity of ST081006 against the dengue virus. Antiviral Research, 2019,171:104589.
doi: 10.1016/j.antiviral.2019.104589
[6] Hua Y F, Wu Y Q, Chun X, et al. Establishment of drug screening in human embryonic stem cells based on a high-content screening system. Journal of Pharmacological and Toxicological Methods, 2020,106:106913.
doi: 10.1016/j.vascn.2020.106913
[7] Giepmans B N G. The fluorescent toolbox for assessing protein location and function. Science, 2006,312(5771):217-224.
doi: 10.1126/science.1124618
[8] Yen H C S, Xu Q K, Chou D M, et al. Global protein stability profiling in mammalian cells. Science, 2008,322(5903):918-923.
doi: 10.1126/science.1160489
[9] Yuen G, Khan F J, Gao S J, et al. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level. Nucleic Acids Research, 2017,45(20):12039-12053.
doi: 10.1093/nar/gkx843
[10] 李颖, 纪木火, 杨建军. 绿色荧光蛋白细胞毒性研究进展. 东南大学学报(医学版), 2020,39(1):116-119.
Li Y, Ji M H, Yang J J. Research progress on cytotoxicity of green fluorescent protein. Journal of Southeast University (Medical Science Edition), 2020,39(1):116-119.
[11] Ghoda L, van Daalen Wetters T, MacRae M, et al. Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science, 1989,243(4897):1493-1495.
doi: 10.1126/science.2928784
[12] Rechsteiner M, Rogers S W. PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences, 1996,21(7):267-271.
pmid: 8755249
[13] Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science, 1986,234(4774):364-368.
doi: 10.1126/science.2876518
[14] 魏泓, 王勇, 刘宇, 等. 重组慢病毒滴度的检测方法: 中国, ZL201010618159.1. 2011-07-27[2021-02-08]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2011&filename=CN102134613A&v=leIGKNH38ruFDLPrY8Ej3oZLKIpGwJJ3ST2VaSJ%25mmd2F9D1iVk3iCAJbwJ9ZVD2mmr7Q.
Wei H, Wang Y, Liu Y, et al. Detection of recombinant lentivirus titer: Chinese, CN102134613A. 2011-07-27[2021-02-08]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2011&filename=CN102134613A&v=leIGKNH38ruFDLPrY8Ej3oZLKIpGwJJ3ST2VaSJ%25mmd2F9D1iVk3iCAJbwJ9ZVD2mmr7Q.
[15] Zhou X Z, Cui Y, Huang X, et al. Lentivirus-mediated gene transfer and expression in established human tumor antigen-specific cytotoxic T cells and primary unstimulated T cells. Human Gene Therapy, 2003,14(11):1089-1105.
doi: 10.1089/104303403322124800
[16] 诺明途, 梁浩, 聂永伟, 等. 转基因阿尔巴斯白绒山羊外源DsRed基因拷贝数与外源基因表达的关系. 农业生物技术学报, 2016,24(6):871-880.
Nuo M T, Liang H, Nie Y W, et al. The relationship between exogenous Ds red gene copy number and exogenous gene expression in transgenic arbas cashmere goats(Capra hircus). Journal of Agricultural Biotechnology, 2016,24(6):871-880.
[17] Brown E J, Pollak M R, Barua M. Genetic testing for nephrotic syndrome and FSGS in the era of next-generation sequencing. Kidney International, 2014,85(5):1030-1038.
doi: 10.1038/ki.2014.48
[18] Hohlbein J, Gryte K, Heilemann M, et al. Surfing on a new wave of single-molecule fluorescence methods. Physical Biology, 2010,7(3):031001.
doi: 10.1088/1478-3975/7/3/031001
[19] Fehse B, Kustikova O S, Bubenheim M, et al. Pois(s)on - it’s a question of dose…. Gene Therapy, 2004,11(11):879-881.
doi: 10.1038/sj.gt.3302270
[20] Spencer S, Gugliotta A, Koenitzer J, et al. Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. Journal of Biotechnology, 2015,195:15-29.
doi: 10.1016/j.jbiotec.2014.12.009 pmid: 25533398
[21] Chen S D, Sanjana N E, Zheng K J, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 2015,160(6):1246-1260.
doi: 10.1016/j.cell.2015.02.038
[22] Li D L, Qiu Z W, Shao Y J, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013,31(8):681-683.
doi: 10.1038/nbt.2661
[23] Vouillot L, Thélie A, Pollet N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 Genes|Genomes|Genetics, 2015,5(3):407-415.
doi: 10.1534/g3.114.015834
[24] Peng C, Wang H, Xu X L, et al. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction. The Plant Journal, 2018,95(3):557-567.
doi: 10.1111/tpj.2018.95.issue-3
[25] Peng C, Zheng M, Ding L, et al. Accurate detection and evaluation of the gene-editing frequency in plants using droplet digital PCR. Frontiers in Plant Science, 2020,11:610790.
doi: 10.3389/fpls.2020.610790
[26] You Q, Zhong Z H, Ren Q R, et al. CRISPRMatch: an automatic calculation and visualization tool for high-throughput CRISPR genome-editing data analysis. International Journal of Biological Sciences, 2018,14(8):858-862.
doi: 10.7150/ijbs.24581 pmid: 29989077
[27] Liu Q, Wang C, Jiao X Z, et al. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 2019,62(1):1-7.
doi: 10.1007/s11427-018-9402-9
[28] Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nature Neuroscience, 2019,22(4):524-528.
doi: 10.1038/s41593-019-0352-0
[29] Ramakrishna S, Kwaku Dad A B, Beloor J, et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 2014,24(6):1020-1027.
doi: 10.1101/gr.171264.113 pmid: 24696462
[30] Lee K, Conboy M, Park H M, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature Biomedical Engineering, 2017,1(11):889-901.
doi: 10.1038/s41551-017-0137-2
[31] Chen G J, Abdeen A A, Wang Y Y, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nature Nanotechnology, 2019,14(10):974-980.
doi: 10.1038/s41565-019-0539-2
[32] Liu X J, Zhang Y P, Cheng C, et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Research, 2017,27(1):154-157.
doi: 10.1038/cr.2016.142
[33] Eoh J, Gu L. Biomaterials as vectors for the delivery of CRISPR-Cas9. Biomaterials Science, 2019,7(4):1240-1261.
doi: 10.1039/C8BM01310A
[34] Elouahabi A, Ruysschaert J M. Formation and intracellular trafficking of lipoplexes and polyplexes. Molecular Therapy, 2005,11(3):336-347.
doi: 10.1016/j.ymthe.2004.12.006
[35] Liu C Y, Wan T, Wang H, et al. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Science Advances, 2019, 5(6): eaaw8922.
doi: 10.1126/sciadv.aaw8922
[36] Yue H H, Zhou X M, Cheng M, et al. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale, 2018,10(3):1063-1071.
doi: 10.1039/C7NR07999K
[37] Mout R, Ray M, Yesilbag Tonga G, et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano, 2017,11(3):2452-2458.
doi: 10.1021/acsnano.6b07600
[1] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[2] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[3] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[4] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[5] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[6] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[7] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[8] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[9] 杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.
[10] 徐然,陈松. CRISPR/Cas9运输系统的研究进展及其在基因相关疾病方面的应用 *[J]. 中国生物工程杂志, 2018, 38(3): 81-88.
[11] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[12] 许丽, 王玥, 姚驰远, 徐萍. 基因编辑技术发展态势分析与建议*[J]. 中国生物工程杂志, 2018, 38(12): 113-122.
[13] 任爽, 朱鸿亮. Taqman定量PCR技术检测基因编辑番茄中外源基因拷贝数体系的建立[J]. 中国生物工程杂志, 2017, 37(10): 72-80.
[14] 阿力玛, 高原, 苏小虎, 周欢敏. CRISPR/Cas9编辑绒山羊FGF5基因细胞株的建立[J]. 中国生物工程杂志, 2016, 36(7): 41-47.
[15] 堵晶晶, 李强, 程霄, 沈林園, 李学伟, 张顺华, 朱砺. CRISPR/Cas系统的研究进展及其在畜禽遗传改良中的应用前景[J]. 中国生物工程杂志, 2016, 36(7): 92-103.