Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (11): 87-95    DOI: 10.13523/j.cb.20191110
综述     
基因编辑技术在疾病治疗中的研究进展 *
杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永()
云南大学医学院 昆明 650091
Advances of Gene Editing in Disease Treatment
YANG Chun-yan,WANG Lei,MU Deng-cai,LI Fang-fang,SHEN Hao,ZHENG Shang-yong()
School of Medicine, Yunnan University, Kunming 650091,China
 全文: PDF(513 KB)   HTML
摘要:

基因编辑是一项旨在对基因组进行定点修饰的新技术,为基因功能分析提供了更强大的工具。现在研究人员可以很容易地利用锌指核酸酶(zinc-finger nuclease,ZFN)、转录激活类效应核酸酶(transcription activator-like effector nuclease,TALEN)、规律成簇的间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)等基因编辑技术来操纵目标基因,这些技术革新了基因功能分析和医学治疗领域。对基因编辑技术的种类、原理进行综述,重点介绍CRISPR基因编辑技术在疾病治疗中的研究进展,并对基因编辑技术的未来进行了展望。

关键词: 基因编辑CRISPRZFNTALEN疾病治疗    
Abstract:

Gene editing is a new technology of precise gene modification which provides a powerful tool for gene function analyses.Currently,these methods such as zinc-finger nuclease (ZFN),transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) are available for researchers to operate target genes. Also fields like gene function analyses and medical therapy have been innovated. The types and principles of gene editing technology are summarized.The research progress of CRISPR gene editing technology in the treatment of diseases was highlighted. In the end,the future research of gene editing technology is prospected.

Key words: Gene editing    CRISPR    ZFN    TALEN    Disease treatment
收稿日期: 2019-04-03 出版日期: 2019-12-17
ZTFLH:  Q354  
基金资助: * 国家自然科学基金(81860494)
通讯作者: 郑尚永     E-mail: shangyong@ynu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨春艳
王磊
穆登彩
李芳芳
沈昊
郑尚永

引用本文:

杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.

YANG Chun-yan,WANG Lei,MU Deng-cai,LI Fang-fang,SHEN Hao,ZHENG Shang-yong. Advances of Gene Editing in Disease Treatment. China Biotechnology, 2019, 39(11): 87-95.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191110        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I11/87

ZFN TALEN CRISPR/Cas9
DNA结合 锌指蛋白 TALE蛋白 指导RNA
DNA切割 Fok I Fok I Cas9
DNA识别范围 18~36bp 30~40bp 22bp
锌指模块 TALE模块 DNA-RNA碱基
识别序列
含有G碱基的序列如下:
5'-GNNGNNGNN-3'
从5'-T开始,
以A-3'结尾的序列
紧接着是相邻的原间隔基序
5'-NGG-3'
剪切位点 单次单个 单次单个 可同时剪切多个位点
优点 靶向结合的高效率
靶向传递基因效率高
蛋白质尺寸(<1kb)
高特异性
1bp的精确识别
相对容易选择目标区域
蛋白质尺寸(>3kb)
自由选择目标区域
指导RNA的简单合成
多路复用能力
靶向效率高
蛋白质尺寸(>3kb)
局限 难选序列
上下文依赖性
既昂贵又费时
脱靶效应
有毒副性
不适用于甲基
既昂贵又费时
脱靶低
低毒性
低通量
PAM序列依赖性
脱靶效应
嵌合体现象
低同源重组率
表1  ZFN、TALEN、CRISPR/Cas9的区别
Cas蛋白 CRISPR系统 指导RNA 目标识别序列
Cas9 II型 crRNA + tracrRNA G-rich PAM
dCas9 II型 crRNA + tracrRNA G-rich PAM
Cpf1(Cas12a) V型 crRNA T-rich PAM
C2c2(Cas13a) VI-A 型 crRNA + tracrRNA Except G-rich
Cas3 I型 crRNA T-rich PAM
dCas13a VI-A型 crRNA + tracrRNA Except G-rich
Cas13b Ⅵ-B型 crRNA PFS
Cas10(Csm1) III型 crRNA AT-rich PAM
表2  各种Cas蛋白的区别
[1] Prakash V, Moore M , Yanez-Munoz R J. Current progress in therapeutic gene editing for monogenic diseases. Mol Ther, 2016,24(3):465-474.
doi: 10.1038/mt.2016.5 pmid: 26765770
[2] 朱玉昌, 郑小江, 胡一兵 . 基因编辑技术的方法、原理及应用. 生物医学, 2015,5(3):32-41.
doi: 10.12677/HJBM.2015.53005
Zhu Y C, Zhen X J, Hu Y B . Methods, principles and applications of gene editing technology. Hans Journal of Biomedicine, 2015,5(3):32-41.
doi: 10.12677/HJBM.2015.53005
[3] Cai M, Yang Y . Targeted genome editing tools for disease modeling and gene therapy. Curr Gene Ther, 2014,14(1):2-9.
doi: 10.2174/156652321402140318165450
[4] Kc M, Steer C J . A new era of gene editing for the treatment of human diseases. Swiss Med Wkly, 2019,149:w20021.DOI: 10.4414/smw.2019.20021.
doi: 10.4414/smw.2019.20021 pmid: 30685869
[5] Klug A . The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem, 2010,43(1):1-21.
doi: 10.1017/S0033583510000089 pmid: 20478078
[6] Ji H Y, Lu P P, Liu B C , et al. Zinc-finger nucleases induced by HIV-1 tat excise HIV-1 from the host genome in infected and latently infected cells. Mol Ther-Nucl Acids, 2018,12:67-74.
doi: 10.1016/j.omtn.2018.04.014 pmid: 30195798
[7] Miller J C, Tan S, Qiao G , et al. A tale nuclease architecture for efficient genome editing. Nat Biotechnol, 2011,29(2):143-148.
doi: 10.1038/nbt.1755 pmid: 21179091
[8] Boch J, Bonas U . Xanthomonas avrbs3 family-type iii effectors: Discovery and function. Annu Rev Phytopathol, 2010,48(1):419-436.
doi: 10.1146/annurev-phyto-080508-081936 pmid: 19400638
[9] Gaj T, Gersbach C A, Barbas C F . ZFN, talen, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013,31(7):397-405.
doi: 10.1016/j.tibtech.2013.04.004 pmid: 23664777
[10] Zarei A, Razban V, Hosseini S E , et al. Creating cell and animal models of human disease by genome editing using CRISPR/Cas9. J Gene Med, 2019,21:e3082. doi: 10.1002/jgm.3082.
doi: 10.1002/jgm.3082 pmid: 30786106
[11] Kieckhaefer J E, Maina F, Wells R G , et al. Liver cancer gene discovery using gene targeting, sleeping beauty, and CRISPR/Cas9//Jordi B, Gregory J G. Seminars in Liver Disease. New York:Thieme Medical Publishers, 2019: 1-13.
[12] Chylinski K, Le Rhun A, Charpentier E . The tracrrna and cas9 families of type ii CRISPR-Cas immunity systems. Rna Biol, 2013,10(5):726-737.
doi: 10.4161/rna.24321
[13] 蒋伟, 黎满香, 田世成 , 等. Crispr系统结构与功能研究进展. 动物医学进展, 2012,33(10):82-86.
Jiang W, Li M X, Tian S C , et al. Advances in the research on the structure and function of CRISPR system. Advances in Animal Medicine, 2012,33(10):82-86.
[14] Shah S A, Erdmann S, Mojica F J , et al. Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biol, 2013,10(5):891-899.
doi: 10.4161/rna.23764
[15] Charpentier E , Richter H, van der Oost J, et al. Biogenesis pathways of rna guides in archaeal and bacterial CRISPR-Cas adaptive immunity. Fems Microbiol Rev, 2015,39(3):428-441.
doi: 10.1093/femsre/fuv023 pmid: 25994611
[16] Ricciardi A S, Quijano E, Putman R , et al. Peptide nucleic acids as a tool for site-specific gene editing. Molecules, 2018,23(3):632-647.
doi: 10.3390/molecules23030632 pmid: 29534473
[17] Bahal R , Ali McNeer N, Quijano E, et al. In vivo correction of anaemia in beta-thalassemic mice by gammapna-mediated gene editing with nanoparticle delivery. Nat Commun, 2016,7(1):13304-13318.
doi: 10.1038/ncomms13304 pmid: 27782131
[18] Rousseau B A, Hou Z G, Gramelspacher M J , et al. Programmable rna cleavage and recognition by a natural CRISPR-Cas9 system from neisseria meningitidis. Mol Cell, 2018,69(5):906-914.
doi: 10.1016/j.molcel.2018.01.025 pmid: 29456189
[19] Bao Z H , HamediRad M, Xue P, et al. Genome-scale engineering of saccharomyces cerevisiae with single-nucleotide precision. Nature Biotechnology, 2018,36(6):505-508.
doi: 10.1038/nbt.4132 pmid: 29734295
[20] Halperin S O, Tou C J, Wong E B , et al. Crispr-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature, 2018,560(7717):248-252.
doi: 10.1038/s41586-018-0384-8 pmid: 30069054
[21] Wang H F, Xu X S, Nguyen C M , et al. CRISPR-mediated programmable 3d genome positioning and nuclear organization. Cell, 2018,175(5):1405-1418.
doi: 10.1016/j.cell.2018.09.013 pmid: 30318144
[22] Gapinske M, Luu A, Winter J , et al. Crispr-skip: Programmable gene splicing with single base editors. Genome Biology, 2018,19(1):107-118.
doi: 10.1186/s13059-018-1482-5 pmid: 30107853
[23] Ran F A, Hsu P D, Wright J , et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013,8(11):2281-2308.
doi: 10.1038/nprot.2013.143
[24] Platt R J, Chen SD, Zhou Y , et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014,159(2):440-455.
doi: 10.1016/j.cell.2014.09.014
[25] Mittal R D . Gene editing in clinical practice: Where are we. Indian J Clin Bioche, 2019,34(1):19-25.
doi: 10.1007/s12291-018-0804-4 pmid: 30728669
[26] Ghosh D, Venkataramani P, Nandi S , et al. CRISPR-Cas9 a boon or bane: The bumpy road ahead to cancer therapeutics. Cancer Cell Int, 2019,19(1):12-22.
doi: 10.1016/j.yhbeh.2018.10.011 pmid: 30713102
[27] Zhou Q, Derti A, Ruddy D , et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res, 2015,75(10):1949-1958.
doi: 10.1158/0008-5472.CAN-14-2930 pmid: 25788694
[28] Choi P S, Meyerson M . Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun, 2014,5(1):3728-3734.
doi: 10.1038/ncomms4728 pmid: 24759083
[29] Torres R, Martin M C, Garcia A , et al. Engineering human tumour-associated chromosomal translocations with the rna-guided CRISPR-Cas9 system. Nat Commun, 2014,5(1):3964-3972.
doi: 10.1038/s41467-018-06333-8 pmid: 30262834
[30] Cho S W, Kim S, Kim J M , et al. Targeted genome engineering in human cells with the Cas9 rna-guided endonuclease. Nat Biotechnol, 2013,31(3):230-232.
doi: 10.1038/nbt.2507 pmid: 23360966
[31] Wang H, Sun W . CRISPR-mediated targeting of her2 inhibits cell proliferation through a dominant negative mutation. Cancer Lett, 2017,385:137-143.
doi: 10.1016/j.canlet.2016.10.033 pmid: 27815036
[32] Cheng B B, Yuan W E, Su J , et al. Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem, 2018,157:582-598.
doi: 10.1016/j.ejmech.2018.08.028 pmid: 30125720
[33] Ren J T, Zhang X H, Liu X J , et al. A versatile system for rapid multiplex genome-edited Car t cell generation. Oncotarget, 2017,8(10):17002-17011.
doi: 10.18632/oncotarget.15218 pmid: 28199983
[34] Manguso R T, Pope H W, Zimmer M D , et al. In vivo CRISPR screening identifies ptpn2 as a cancer immunotherapy target. Nature, 2017,547(7664):413.
doi: 10.1038/nature23270 pmid: 28723893
[35] Conboy I, Murthy N, Etienne J , et al. Making gene editing a therapeutic reality. F1000 Research, 2018,7:1970.
doi: 10.12688/f1000research.16106.1 pmid: 30613384
[36] Tabebordbar M, Zhu K , Cheng J K W, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016,351(6271):407-411.
doi: 10.1126/science.aad5177 pmid: 26721686
[37] Nelson C E, Hakim C H, Ousterout D G , et al. In vivo genome editing improves muscle function in a mouse model of duchenne muscular dystrophy. Science, 2016,351(6271):403-407.
doi: 10.1126/science.aad5143 pmid: 26721684
[38] Amoasii L , Hildyard J C W, Li H, et al. Gene editing restores dystrophin expression in a canine model of duchenne muscular dystrophy. Science, 2018,362(6410):86-90.
doi: 10.1126/science.aau1549 pmid: 30166439
[39] Amoasii L, Long C Z, Li H , et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med, 2017, 9(418):eaan8081.
[40] Chen Y C, Zheng Y H, Kang Y , et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet, 2015,24(13):3764-3774.
doi: 10.1093/hmg/ddv120 pmid: 25859012
[41] Huai C, Jia C, Sun R , et al. CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia b mice. Hum Genet, 2017,136(7):875-883.
doi: 10.1007/s00439-017-1801-z pmid: 28508290
[42] Ohmori T, Nagao Y, Mizukami H , et al. CRISPR/Cas9-mediated genome editing via postnatal administration of aav vector cures haemophilia b mice. Sci Rep, 2017,7(1):4159.
doi: 10.1038/s41598-017-04625-5 pmid: 28646206
[43] Rangarajan S, Walsh L, Lester W , et al. Aav5-factor viii gene transfer in severe hemophilia a. N Engl J Med, 2017,377(26):2519-2530.
doi: 10.1056/NEJMoa1708483 pmid: 29224506
[44] Chiuchiolo M J, Crystal R G . Gene therapy for alpha-1 antitrypsin deficiency lung disease. Annals of the American Thoracic Society, 2016,13(4):S352-S369.
doi: 10.1513/AnnalsATS.201506-344KV pmid: 27564673
[45] Stephens C J, Kashentseva E, Everett W , et al. Targeted in vivo knock-in of human alpha-1-antitrypsin cdna using adenoviral delivery of CRISPR/Cas9. Gene Ther, 2018,25(2):139-156.
doi: 10.1038/s41434-018-0003-1 pmid: 29588497
[46] Shen S, Sanchez M E, Blomenkamp K , et al. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Human Gene Therapy, 2018,29(8):861-873.
doi: 10.1089/hum.2017.227 pmid: 29641323
[47] Tu Z C, Yang W L, Yan S , et al. CRISPR/Cas9: A powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener, 2015,10(1):35-43.
doi: 10.1186/s13024-015-0031-x pmid: 26238861
[48] Jung Y W, Hysolli E, Kim K Y , et al. Human induced pluripotent stem cells and neurodegenerative disease: Prospects for novel therapies. Curr Opin Neurol, 2012,25(2):125-130.
doi: 10.1097/WCO.0b013e3283518226
[49] Ross C A, Akimov S S . Human-induced pluripotent stem cells: Potential for neurodegenerative diseases. Hum Mol Genet, 2014,23(R1):R17-R26.
doi: 10.1093/hmg/ddu204 pmid: 24824217
[50] Maruyama T, Dougan S K, Truttmann M C , et al. Corrigendum: Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2016,34(2):210.
doi: 10.1038/nbt0216-210a pmid: 26849524
[51] Kramer N J, Haney M S, Morgens D W , et al. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of c9orf72 dipeptide-repeat-protein toxicity. Nat Genet, 2018,50(4):603-612.
doi: 10.1038/s41588-018-0070-7 pmid: 29507424
[52] Bezerra L M D . Global report: Unaids report on the global aids epidemic: 2010. Geneva Switzerland Unaids, 2012,27(7):553-556.
doi: 10.1002/jia2.25320 pmid: 31328445
[53] Donahue D A, Wainberg M A . Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology, 2013,10(1):11.
doi: 10.1186/1742-4690-10-4
[54] Saayman S, Ali S A, Morris K V , et al. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther, 2015,15(6):819-830.
doi: 10.1517/14712598.2015.1036736 pmid: 25865334
[55] Zhu W, Lei R, Le Duff Y , et al. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology, 2015,12(1):22.
doi: 10.1186/s12977-015-0150-z pmid: 25808449
[56] Ebina H, Misawa N, Kanemura Y , et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep, 2013,3(8):2510.
doi: 10.1038/srep02510 pmid: 23974631
[57] Liao H K, Gu Y, Diaz A , et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun, 2015,6(1):6413-6423.
doi: 10.1038/ncomms7413 pmid: 25752527
[58] Saha S K, Saikot F K, Rahman M S , et al. Programmable molecular scissors: Applications of a new tool for genome editing in biotech. Mol Ther Nucleic Acids, 2019,14:212-238.
doi: 10.1016/j.omtn.2018.11.016 pmid: 30641475
[59] Hammoudi N, Ishikawa K, Hajjar R J . Adeno-associated virus-mediated gene therapy in cardiovascular disease. Curr Opin Cardiol, 2015,30(3):228-234.
doi: 10.1097/HCO.0000000000000159 pmid: 25783685
[60] Chadwick A C, Musunuru K . CRISPR-Cas9 genome editing for treatment of atherogenic dyslipidemia. Arterioscl Throm Vas, 2018,38(1):12-18.
doi: 10.1161/ATVBAHA.117.309326 pmid: 28838920
[61] Ran F A, Cong L, Yan W X , et al. In vivo genome editing using staphylococcus aureus Cas9. Nature, 2015,520(7546):186-198.
doi: 10.1038/nature14299 pmid: 25830891
[62] Sabatine M S, Giugliano R P, Keech A C , et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. New Engl J Med, 2017,376(18):1713-1722.
doi: 10.1056/NEJMoa1615664 pmid: 28304224
[63] Ma H, Marti-Gutierrez N, Park S W , et al. Correction of a pathogenic gene mutation in human embryos. Nature, 2017,548(7668):413-419.
doi: 10.1038/nature23305 pmid: 28783728
[64] Ormond K E, Mortlock D P, Scholes D T , et al. Human germline genome editing. American Journal of Human Genetics, 2017,101(2):167-176.
doi: 10.1016/j.ajhg.2017.06.012 pmid: 28777929
[65] Yin H, Song C Q, Suresh S , et al. Structure-guided chemical modification of guide rna enables potent non-viral in vivo genome editing. Nat Biotechnol, 2017,35(12):1179-1187.
doi: 10.1038/nbt.4005 pmid: 29131148
[66] Zuris J A, Thompson D B, Shu Y , et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol, 2015,33(1):73-80.
doi: 10.1038/nbt.3081 pmid: 25357182
[67] Wujin S, Wenyan J, Hall J M , et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angewandte Chemie, 2015,54(41):12029-12033.
doi: 10.1002/anie.201506030 pmid: 26310292
[68] Zuris J A, Thompson D B, Shu Y , et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol, 2015,33(1):73-80.
doi: 10.1038/nbt.3081 pmid: 25357182
[69] Lee K, Conboy M, Park H M , et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng, 2017,1(11):889-901.
doi: 10.1038/s41551-017-0137-2 pmid: 29805845
[70] Carolina P, Daniela C, Francesco P , et al. Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells. Molecular Therapy the Journal of the American Society of Gene Therapy, 2015,23(2):352-362.
doi: 10.1038/mt.2014.193 pmid: 25270076
[71] Kohn D B . Gene therapy for blood diseases. Curr Opin Biotechnol, 2018,60C:39-45.
doi: 10.1002/cbf.3466 pmid: 31833074
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 赵霞,朱哲,祖尧. 斑马鱼tbx2b调控心脏房室间隔发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(8): 1-7.
[3] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[4] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[5] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[6] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[7] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[8] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[9] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[10] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[11] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[12] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[13] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[14] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[15] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.