Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (10): 72-80    DOI: 10.13523/j.cb.20171010
技术与方法     
Taqman定量PCR技术检测基因编辑番茄中外源基因拷贝数体系的建立
任爽, 朱鸿亮
中国农业大学食品科学与营养工程学院 北京 100083
Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato
REN Shuang, ZHU Hong-liang
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
 全文: PDF(1278 KB)   HTML
摘要: 近些年CRISPR/Cas9基因编辑技术已广泛应用于作物遗传育种中,经过拷贝数筛选得到的单拷贝基因编辑株系,可以进行遗传分离获得具有改良性状但不携带外源基因成分的非转基因植株,消除转基因安全性的风险。目前拷贝数的检测主要采用Southern杂交,但是该方法存在操作复杂,需要相对大量的植物材料等缺点,不能进行高通量的筛选。为建立简便高效的基因编辑番茄植株中外源基因拷贝数的检测体系,以内源性基因APX(抗坏血酸过氧化物酶基因)作为内参基因,外源性基因HPT(潮霉素磷酸转移酶基因)作为目的基因,利用Taqman法的实时荧光定量PCR技术,检测有12株PDS基因(八氢番茄红素脱氢酶基因)编辑番茄中外源抗性基因HPT的拷贝数为1,初步建立了一种检测基因编辑植株中外源基因整合拷贝数的方法,为快速可靠的筛选单拷贝改良株系奠定了一定的技术基础。
关键词: 实时荧光定量PCRCRISPR/Cas9基因编辑番茄拷贝数Taqman探针    
Abstract: Recently, CRISPR/Cas9 genome editing technology has been broadly utilized to crop breeding. Genome-edited but transgene-free plants can be segregated away from T0 transgenic plants by genetic separation, which will eliminate the risk of transgenic safety. Copy numbers of transgene which has been integrated into the transformed plant genome is a critical factor affecting the genetic separation of the offspring. Copy numbers are currently obtained by Southern blot analysis, but this method is complicated and requires relatively large amounts of plant materials. As to avoid these shortcomings, Real-time Fluorescent Quantitative Polymerase Chain Reaction provides a new solution. The endogenous ascorbate peroxidase (APX) is selected as reference gene. The exogenous hygromycin phosphortransferase (HPT) is selected as target gene. With the Taqman RT-PCR conditions, one copy was significantly estimated in the 12 genome edited tomatos of slyPDS (Phytoene desaturase). Initially, a sensitive and efficient detection system is developed for estimating copy number in genome edited tomato, which laid a foundation for the rapid and reliable screening of improved crops.
Key words: Real-time Fluorescent Quantitative PCR    Taqman probe    CRISPR/Cas9    Copy number    Genome edited tomato
收稿日期: 2017-04-13 出版日期: 2017-10-25
ZTFLH:  Q786  
通讯作者: 朱鸿亮,hlzhu@cau.edu.cn     E-mail: hlzhu@cau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
任爽
朱鸿亮

引用本文:

任爽, 朱鸿亮. Taqman定量PCR技术检测基因编辑番茄中外源基因拷贝数体系的建立[J]. 中国生物工程杂志, 2017, 37(10): 72-80.

REN Shuang, ZHU Hong-liang. Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato. China Biotechnology, 2017, 37(10): 72-80.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171010        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I10/72

[1] 周想春, 邢永忠. 基因组编辑技术在植物基因功能鉴定及作物育种中的应用. 遗传, 2016, 38(3):227-242. Zhou X C, Xing Y Z. The application of genome editing in identification of plant gene function and crop breeding. Hereditas, 2016, 38(3):227-242.
[2] 曾秀英, 侯学文. CRISPR/Cas9基因组编辑技术在植物基因功能研究及植物改良中的应用. 植物生理学报, 2015,51(9):1351-1358. Zeng X Y, Hou X W. Application of CRISPR/Cas9 genome editing technology in functional genomics and improvement of plants. Plant Physiology Journal, 2015,51(9):1351-1358.
[3] 魏鹏程, 杨剑波, 李浩, 等. 一种主要农作物非转基因的基因组定向分子改良方法和应用. 安徽, CN103555711A, 2014. A Method and Application of Genome-oriented Molecular Modification for Non-transgenic Genes in a Main Crop. Anhui, CN103555711A, 2014.
[4] 李敏, 汪洋, 张银萍, 等. TaqMan探针与SYBR Green实时定量PCR法检测转基因植物外源基因拷贝数的差异分析. 安徽农业大学学报, 2012, (4):568-570. LI M, Wang Y, Zhang Y P, et al. Variance analysis between TaqMan probe and SYBR Green real-time quantitative PCR for determining the copy number of transgene in transformed plants. Journal of Anhui Agricultural University, 2012, (4):568-570.
[5] Stefano B, Patrizia B, Matteo C, et al. Inverse PCR and quantitative PCR as alternative methods to southern blotting analysis to assess transgene copy number and characterize the integration site in transgenic woody plants. Biochemical Genet, 2016, 54(3):1-15.
[6] Xu X, Peng C, Wang X, et al. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize. Transgenic Res, 2016, 25(6):855-864.
[7] Schouten J P, Mcelgunn C J, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res, 2002, 30(12):e57.
[8] Carter N P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet, 2007, 39(7 suppl):S16-S21.
[9] 苏慧慧, 李涛, 谢雯琦, 等. 基于实时荧光定量PCR对转基因樱桃番茄外源基因拷贝数的检测. 分子植物育种, 2015, 13(2):345-354. Su H H, Li T, Xie W Q, et al. Detecting exogenous gene copy numbers of exogenous gene in transgenic tomato based on fluorescent quantitative real-time PCR. Molecular Plant Breeding, 2015, 13(2):345-354.
[10] 白国辉, 刘建国, 田源,等. 转基因番茄防龋疫苗中外源目的基因拷贝数的检测. 上海口腔医学, 2013, 22(6):613-617. Bai G H, Liu J G, Tian Y, et al. Detection of the exogenous gene copy number of the transgenic tomato anti-caries vaccine. Shanghai Journal of Stomatology, 2013, 22(6):613-617.
[11] Yang L, Ding J, Zhang C, et al. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep, 2005, 23(10):759-763.
[12] 张贺, 李波, 周虚, 等. 实时荧光定量PCR技术研究进展及应用. 动物医学进展, 2006, 27(z1):5-12. Zhang H, Li B, Zhou X, et al. Technology of capillary electrophoresis and its application in analysis of veterinary drug residues. Progress in Veterinary Medicine, 2006, 27(z1):5-12.
[13] 王爱民. 实时荧光定量PCR(TaqMan)法测定外源基因的拷贝数. 广西植物, 2009, 29(3):408-412. Wang A M. Estimating copy number of transgenic gene by real-time fluorescent quantitative PCR(TaqMan). Guihaia, 2009, 29(3):408-412.
[14] 裘劼人, 许颖, 喻富根. 利用SYBR Green实时定量PCR法检测转基因植物外源基因的拷贝数. 安徽农业科学, 2011, 39(21):12655-12657. Qiu J R, Xu Y, Yu F G. Estimating the copy number of transgenes in transformed Arabidopsis by SYBR green real-time quantitative PCR. Journal of Anhui Agricultural Sciences, 2011, 39(21):12655-12657.
[15] 朱建楚, 胡银岗, 奚亚军, 等. 实时荧光定量PCR技术在检测外源基因拷贝数中的应用. 西北农业学报, 2005, 14(6):78-82. Zhu J C, Hu Y G, Xi Y J, et al. The Application of quantitative real-time fluorescent PCR techniques in detecting the copy number of transgenic gene.Acta Agriculturae Boreali-occidentalis Sinica, 2005, 14(6):78-82.
[16] Klein D. Quantification using real-time PCR technology:applications and limitations. Trends Mol Med, 2002, 8(6):257-260.
[17] 梁彦君. 转基因番茄外源基因检测方法研究. 杭州:浙江理工大学, 生命科学学院, 2013. Liang Y J. Research on the detection methods of exogenous genes in transgenic tomato. Hangzhou:Zhejiang Sci-Tech University, College of Life Sciences, 2013.
[18] 赵焕英, 包金风. 实时荧光定量PCR技术的原理及其应用研究进展. 中国组织化学与细胞化学杂志, 2007, 16(4):492-497. Zhao H Y, Bao J F. Research on the principle and application of Real-time Fluorescence Quantitative Polymerase Chain Reaction. Chinese Journal of Histochemistry and Cytochemistry, 2007, 16(4):492-497.
[19] 钟江华, 张光萍, 柳小英. 实时荧光定量PCR技术的研究进展与应用. 氨基酸和生物资源, 2011, 33(2):68-72. Zhong J H, Zhang G P, Liu X Y. Development of Real-Time Fluorescent Quantitative PCR and its application. Amino Acids & Biotic Resources, 2011, 33(2):68-72.
[20] 洪云, 李津, 汪和睦, 等. 实时荧光定量PCR技术进展. 国外流行病学传染病学杂志, 2006, 33(3):161-163. Hong Y, Li J, Wang H M, et al. Progress in real-time quantitative PCR technique. International Journal of Epidemiology and Infectious Disease, 2006, 33(3):161-163.
[21] 廉红霞, 高腾云, 傅彤, 等. 实时荧光定量PCR定量方法研究进展. 江西农业学报, 2010, 22(10):132-136. Lian H X, Gao T Y, Fu T, et al.Research advance in method of Real-time Fluorescent Quantitative Polymerase Chain Reaction. Acta Agriculturae Jiangxi, 2010, 22(10):132-136.
[22] 陈旭, 齐凤坤, 康立功, 等. 实时荧光定量PCR技术研究进展及其应用. 东北农业大学学报, 2010, 41(8):148-155. Chen X, Qi F K, Kang L G, et al. Advance and application of real-time fluorescent quantitative PCR. Journal of Northeast Agricultural University, 2010, 41(8):148-155.
[23] 李淑洁, 张正英. REAL-TIME PCR方法测定转基因小麦中外源基因拷贝数. 中国生物工程杂志, 2010, 30(3):90-94. Li S J, Zhang Z Y. Using Real-time PCR to determine transgene copy number in wheat. China Biotechnology, 2010, 30(3):90-94.
[24] 冀志庚, 高学军, 敖金霞, 等. SYBR Green实时定量PCR检测转基因大豆中外源基因拷贝数. 东北农业大学学报, 2011, 42(10):11-15. Ji Z G, Gao X J, Ao J X, et al. Establishment of SYBR Green-base quantitative real-time PCR assay for determining transgene copy number in transgenic soybean. Journal of Northeast Agricultural University, 2011, 42(10):11-15.
[25] 韩强, 刘瑞芳, 陆玲鸿, 等. 实时荧光PCR检测转基因大豆外源基因的拷贝数. 核农学报, 2016, 30(4):646-653. Han Q, Liu R F, Lu L H, et al. Detection of transgene copy number in transgenic soybean by Real-time Fluorescence Quantitative PCR. Journal of Nuclear Agricultural Sciences, 2016, 30(4):646-653.
[26] Qiu Y W, Gao X J, Qi B R, et al. Establishment of TaqMan Real-time Quantitative PCR Assay for foreign gene copy numbers in transgenic soybean. Journal of Northeast Agricultural University(English Edition), 2012, 19(4):48-52.
[27] Yi C X, Hong Y. Estimating the copy number of transgenes in transformed cotton by real-time quantitative PCR. Methods in Molecular Biology, 2013, 958(10-11):109-130.
[28] Mason G, Provero P, Vaira A M, et al. Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol, 2002, 2(1):20.
[29] Ma X L, Zhang Q Y, Zhu Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8(8):1274-1284.
[30] Song P, Cai C, Skokut M, et al. Quantitative real-tmie PCR as a screening tool for estimating transgene copy number in WHISKERSTM-derived transgenic maize. Plant Cell Reports, 2002, 20(10):948-954.
[31] 文莉. 利用实时定量PCR技术检测柑橘外源基因的拷贝数. 武汉:华中农业大学, 园艺林学学院, 2011. Wen L. Estimating transgene copy number in citrus by Real-Time Quantitative PCR. Wuhan:Huazhong Agricultural University, College of Horticulture & Forestry Sciences, 2011.
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[3] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[4] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[5] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[6] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[7] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[8] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[9] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[10] 刘丽艳,刘琪琦,张影,王升启. 双链探针实时荧光PCR核酸检测新技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 28-34.
[11] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[12] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[13] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[14] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[15] 潘海峰,杨晗,于思远,李廷栋,葛胜祥. 基于体外组装核糖核蛋白形式的CRISPR/Cas9基因编辑方法研究进展 *[J]. 中国生物工程杂志, 2019, 39(1): 71-76.